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Abstract

The Volume-Synchronized Probability of Informed trading (VPIN) metric is introduced by
Easley, López de Prado, and O’Hara (2011a) as a real-time indicator of order flow toxicity. They
find the measure useful in monitoring order flow imbalances and conclude it may help signal
impending market turmoil, exemplified by historical high readings of the metric prior to the flash
crash. More generally, they show that VPIN is significantly correlated with future short-term return
volatility. In contrast, our empirical investigation of VPIN documents that it is a poor predictor
of short run volatility, that it did not reach an all-time high prior, but rather after, the flash crash,
and that its predictive content is due primarily to a mechanical relation with the underlying trading
intensity. We also investigate a later incarnation of VPIN, stemming from Easley, López de Prado,
and O’Hara (2012a), and reach similar conclusions. In general, we stress that adoption of any
specific metric for order flow toxicity should be contingent on satisfactory performance relative to
suitable benchmarks, exemplified by the analysis we undertake here.
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1. Introduction

In a series of articles, Easley, López de Prado, and O’Hara, henceforth ELO, (2011a, 2011b, 2011c,
2012a) develop the “Volume-Synchronized Probability of Informed trading” (VPIN) metric as a proxy
for the imbalance or “toxicity” of order flow. The construction of VPIN relies on an underlying trade
classification scheme, and this choice has implications for the properties of the measure. In the initial
papers, ELO use a version of the tick rule to classify trades into buy and sell volume, and we denote any
metric based on this procedure TR-VPIN for “Tick Rule-VPIN.” In ELO (2012a), they instead advocate
a “bulk volume” classification strategy, and we refer to the associated metric as BV-VPIN. Another
important feature is that VPIN captures the market dynamics in event time, i.e., equal increments of
trading volume rather than calendar time. Hence, their analysis uses a transformed time scale where
the basic unit is a fixed volume bucket rather than a constant stretch of calendar time. They find their
VPIN implementation to produce a set of striking empirical results, using one-minute observations for
the order flow on the E-mini S&P 500 futures contract at the Chicago Mercantile Exchange.

ELO (2011a) focus on the events surrounding the “flash crash” on May 6, 2010. First, they note
that the TR-VPIN measure was unusually high in the week preceding May 6, 2010, and the situation
worsened in the hours prior to the crash. In fact, they observe that the TR-VPIN metric for the E-mini
S&P 500 futures contract reached an all-time historical high by 13:30 local Chicago Time, and the
crash began at 13:32 according to the time line established by CFTC-SEC (2010). Second, they find
that the TR-VPIN measure leads the Volatility Index (VIX) for the S&P 500 index, both prior, during,
and following the dramatic events of May 6, 2010. As such, they suggest TR-VPIN provides a superior
and more timely indicator of future short-term volatility, or emerging turmoil, than the option-implied
volatility measure, VIX, which is otherwise often referred to as the “market fear” gauge.

The findings reported by ELO raise the prospect that TR-VPIN may serve as a reliable indicator
of stress in the financial markets, thus providing regulators, brokers, and traders alike with a real-time
warning signal of market malfunction. To allow the broader public access to this information in a
timely fashion, they advocate introducing an exchange-traded futures contract written on TR-VPIN.

In this article, we take an in-depth look at the empirical performance of TR- and BV-VPIN applied
to the E-Mini S&P 500 futures contract. We initially focus on first variant, TR-VPIN, and develop
an empirical framework for assessing the properties of this metric.1 Even within this set of measures,
there are numerous alternative classification strategies. We document that the results hinge critically on
the choice among those. We reach four main conclusions that, on key points, diverge from ELO. One,
TR-VPIN is not a useful predictor for future return volatility. Traditional forecast variables, including
the VIX index, are generally vastly superior to TR-VPIN, even for very short horizons. Two, TR-VPIN
is, by construction, mechanically related to the underlying trading intensity and its predictive content
is subsumed by that of the trading pattern. Three, TR-VPIN did not attain a historical high prior to the
flash crash, but only after it subsided. In fact, reconstructing the real-time information available prior
to the crash, we find little evidence that TR-VPIN would have alerted an observer of a sharply rising
probability of an impending market collapse. Four, TR-VPIN is subject to considerable idiosyncratic
sampling noise due to dependence on the point at which the volume clock is initiated.

Although sampled according to a volume clock, the TR-VPIN metric of ELO (2011a, 2011b,
2011c) is highly correlated with trading intensity. This stems from the use of time bars in aggregating
individual transactions into blocks of volume. Within a time bar all trades are jointly classified as
(active) buys or sells so, effectively, they are treated as a single transaction. When trading is intense,

1The algorithm for computing TR-VPIN, detailed in ELO (2011c), was submitted to the U.S. Patent and Trademark Office.
For a discussion of potential contract design for a TR-VPIN futures contract, see ELO (2011b).
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each time bar contains a lot of volume and the number of time bars used for constructing TR-VPIN
shrinks. This, in turn, inflates the order imbalance measure, independently of the actual order flow
imbalance. Quantifying this effect, we find almost all systematic variation in TR-VPIN to be explained
by the heterogeneity in the trading pattern. Trade classification plays a minimal role.

Of course, the trading pattern is endogenous and may respond to, and reflect, the underlying order
flow imbalances so the above does not necessarily imply that TR-VPIN is uninformative. However,
trading intensity has long been known to covary with, and contain predictive content for, a variety of
other activity variables, including return volatility. Moreover, the trading intensity is readily observed
so, to assess the incremental contribution of TR-VPIN, it is critical to disentangle the information
conveyed by the metric from that associated with the trading pattern. Towards this end, we explore
a couple of alternative measures, designed to neutralize the confounding impact of the time bar and
to identify the dependence on the trade classification scheme. For instance, using a fixed volume bin
rather than a time bar in measuring order imbalances provides a pure trading time based metric for
VPIN, while randomizing the trade classification annihilates the effect of systematic order imbalances.

For fixed volume bin VPIN measures, we find a negligible link with trading volume and, strikingly,
a pronounced negative association with volatility. Thus, once we annihilate the mechanical link between
volume and TR-VPIN, the correlation with volatility reverses sign. Likewise, using an alternative
control for the trading pattern, the contribution of TR-VPIN to short-term volatility prediction, over
and beyond the component explained by the trading pattern, is negative. Moreover, we reach similar
conclusions using a VPIN measure based on the standard tick rule from (non-aggregated) transaction
data. Finally, on the day of the flash crash, both the transaction-VPIN and fixed volume bin VPIN
measures rise prior to the crash, but do not reach extreme values around the crash. Hence, our study
raises serious questions about the reliability of TR-VPIN for assessing order flow toxicity. In particular,
the fixed volume bin approach is, theoretically, more in line with the volume clock advocated by ELO,
so it is troubling that associated metric reverses all main findings obtained via TR-VPIN.

We also experiment with a signed VPIN measure which allows order flow imbalances to offset over
time. This approach reduces the idiosyncratic noise and appears helpful in detecting the momentum
in the order flow around the flash crash. Nonetheless, we caution against the adoption of any specific
metric, unless it retains significance in formal tests which incorporate readily observable real-time
market activity measures, such as trading intensity, implied volatility measures, and the like. The latter
is necessary to gauge the incremental information content of any new metric.

Our analysis should be useful in rationalizing the behavior of VPIN measures more generally. As
mentioned, ELO (2012a) propose a different trade classification strategy, but otherwise compute VPIN
as before, generating the BV-VPIN metric. We explore whether our findings regarding TR-VPIN –
coupled with the features introduced by the shift to the BV scheme – provide insights into the properties
of this newer metric.2 We confirm that the qualitative behavior of BV-VPIN is consistent with our
analytical framework, further corroborating our empirical findings.

The remainder of the paper is structured as follows. Section 2 verifies that we obtain results
comparable to ELO (2011a) when exploiting their TR-VPIN metric. Section 3 introduces alternative
ways of constructing TR-VPIN style measures. Section 4 explores the properties of TR-VPIN and
identifies the source of mechanical correlation with trading intensity. Section 5 presents empirical
results based on the full sample. Section 6 introduces BV-VPIN and explores the properties of this
measure. Section 7 revisits the flash crash and reviews the evidence through the lens of alternative TR-
and BV-VPIN measures. Section 8 concludes.

2Our analytic framework was developed, and put in writing, prior to the appearance of the initial working paper
introducing the BV-VPIN strategy. In this respect, the exploration of BV-VPIN is an “out-of-sample” exercise.
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2. A first look at VPIN and the flash crash

2.1 Data

Our study is based on transaction data for the E-mini S&P 500 futures contract over the January
2008 through July 2010 period. The E-mini contract is traded exclusively in a fully electronic limit
order book market on the Chicago Mercantile Exchange (CME) Globex trading platform. Our data were
extracted from the Time & Sales series obtained from CME DataMine and include the full sequence of
trades consummated over the given period, along with the time (in seconds), the price, and the number
of contracts exchanged for each transaction. This series covers a period similar to the one explored by
ELO (2011a), although it does not include the last few months of their sample. It is important that the
underlying transaction data are comprehensive. We have confirmed that the number of contracts traded
during the regular trading hours on May 6, 2010, match the figure reported by Kirilenko et al. (2011).3

Moreover, our series contains a slightly larger trading volume than what is employed by ELO, who rely
on a different source for their data. Hence, our transaction series provides a comprehensive account of
the trading activity in the E-mini S&P 500 futures contract.

2.2 One-minute TR-VPIN and the flash crash

Before proceeding, we first confirm that our data series is compatible with the one used by ELO
and, in particular, that we obtain similar evidence regarding TR-VPIN on May 6, 2010. Hence, we
construct TR-VPIN according to the algorithm in ELO (2011c). For this purpose, we aggregate our
transaction series into one-minute observations, or “time bars,” containing the last recorded price and
the cumulative trading volume. This generates our version of the one-minute bars used by ELO.4

Figure 1 depicts the S&P 500 futures price, the VIX, the daily maximum value of the one-minute
time-bar TR-VPIN measure, and, for later reference, the corresponding daily maximum value of the
one-minute time-bar BV-VPIN metric. It is evident that TR-VPIN spikes to an all-time high on May
6, 2010. The only other day displaying a similar type of spike is June 6, 2008, but it does not attain
the level reached on the day of the “flash crash.” We also note that VIX jumps on May 6, 2010, but it
remains well below the values observed during the financial crisis of 2008-2009.

Figure 2 offers a detailed look at May 6, 2010. It shows the extremely rapid drop of the equity index
level during the flash crash and the equally dramatic recovery. This development was accompanied by
an escalation in trading activity and a quick run-up in the VIX measure. Finally, we confirm that
TR-VPIN had been rising steadily throughout the day, increasing from below 0.40 in early trading to
about 0.53 just prior to the crash – largely mimicking the evolution portrayed in Exhibit 5 of ELO
(2011a). Comparing Figure 2 to the graphs in ELO (2011a), there is a close correspondence between
all main qualitative features. Hence, we are able to replicate the primary characteristics of the ELO
study for the overall sample, as well as for this critical day.

Importantly, however, there is one key result, cited in ELO (2011a), that we cannot confirm. We
summarize this point as our first “finding”:

Finding 1: The level of TR-VPIN just prior to the flash crash is elevated, but it is not at a
historical high. The TR-VPIN metric only achieves a historical high after the crash has subsided.

This result is corroborated by the bottom left panel of Figure 1 where the higher dashed horizontal
line indicates the level 0.53 – the value TR-VPIN attains just prior to the flash crash. The TR-VPIN

3This study explores features of the flash crash using a more detailed audit-trail data set for the transactions in the E-mini
S&P 500 futures contract during regular trading hours over May 3-6, 2010.

4We do not provide details about the construction of TR-VPIN here, as they are covered at length below.
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Figure 1: The evolution of S&P 500, VIX, TR-VPIN, and BV-VPIN. The figure depicts daily values of
the S&P 500 index, VIX, TR- and BV-VPIN for δ = 60 seconds from January 2008 through June 2010. The
horizontal dashed lines show the level of VPIN measures on the Flash Crash day at 12:30 (the lower one) and
13:30 (the higher one). Prior to May 6, 2010, TR-VPIN (VB-VPIN) exceeds the 13:30 dashed line on 26 (49)
separate days, constituting 4.3% (8.1%) of the days prior to the crash.

series exceeds this level on 26 separate days, prior to May 6, 2010, during our sample, constituting
4.3% of the days prior to the crash. In other words, according to our, admittedly short, historical series,
one would expect to observe the value, attained by TR-VPIN prior to the flash crash, about once every
month. Since one main motivations behind the development of the VPIN metric is to provide a warning
signal for an impending market disruption, this point is important.5

In light of this observation, the behavior of TR-VPIN prior to the crash may be noteworthy, but
it is not exceptional. Even more importantly – as we document later – other market variables were
behaving in an even more unusual fashion prior to and during the crash. The key question will be what
incremental information is conveyed by the TR-VPIN metric. However, before turning to our empirical
investigation, we need to explain how TR-VPIN is constructed.

3. Constructing the TR-VPIN metric

3.1 Data aggregation and trade classification

Our study is based on transaction data extracted from the Time & Sales files for the E-mini S&P
500 futures contract, covering a sample period we denote [0,T ]. Each transaction, or tick, is represented
by the triplet (ti, pi,si), where ti indicates the time of transaction i, pi denotes the price at which the
contracts were traded, and si denotes the size of transaction i, expressed in terms of the number of
futures contracts exchanged. Transaction times are measured in seconds and form a non-decreasing
sequence 0≤ t1 ≤ t2 . . .≤ T . While many trades may occur within the same second, we know the order

5ELO (2011a) state (using Eastern Time): “By 2:30 p.m., the VPIN metric reached its highest level in the history of the
E-mini S&P 500. At 2:32 p.m., the crash began, according to the CFTC-SEC Report time line.” Similar statements made
headlines in a number of prominent media outlets. However, whether the claim refers to the maximum of VPIN for the full
sample or to the running maximum prior to the flash crash, the claim is misguided.
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Figure 2: S&P 500, TR-VPIN, VIX, and trading volume on May 6, 2010. The figure depicts
minute-by-minute data for the S&P 500 futures index level, the TR-VPIN measure constructed from one-minute
data, the volatility index, VIX, and the volume of traded contracts of the S&P 500 E-mini futures on the CME,
for May 6, 2010. The dashed vertical line shows the start of the regular trading hours, while the solid vertical
lines indicate the timing of the “flash crash.”

in which they were executed via an associated transactions sequence indicator. As such, we have a
complete transactions history for the contract over the sample period.

ELO (2011c) argue that trade classification is error prone at the transaction level. Hence, they focus
on transaction data aggregated into time bars. However, there are many different ways in which to
aggregate transactions data and we also explore a procedure that combines the underlying transactions
into blocks with an equal trading volume (the same number of traded contracts). Consequently, we
adopt the notation to accommodate such different types of aggregation.

First, we define the time bars. We let 0 = T0 < T1 < T2 . . . represent an equally-spaced calendar
time grid with fixed time step δ , so that Tj = δ · j. The empirical analysis in ELO exploits one-minute
bars, or δ = 60 seconds, although they consider alternative values. Correspondingly, we focus on the
one-minute time bars, but we explore the sensitivity of the results to variation in the degree of time
aggregation. Once the time bars are defined, the data may be represented by the triplets (Tj,Pj,N j),
where Pj is the last transaction price prior to time Tj, and N j is the total number of contracts traded over
the time interval [T0,Tj), for j = 1, . . . ,Jδ = T/δ . Note that N j denotes the cumulative volume traded
by the end of the jth time bar. Sometimes, it might be more convenient to represent the aggregated data
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by the triplets (Tj,Pj,n j), where n j = N j−N j−1 denotes the volume within the jth bar.
Following ELO, we sign the entire order flow in each time bar using a classification scheme akin

to the tick rule. The binary variable b j = ±1 indicates whether the contracts exchanged within the jth

time bar are labeled buyer or seller initiated. For j = 2, . . . ,Jδ , this indicator is defined as,

b j =

{
1, if Pj > Pj−1, or Pj = Pj−1 and b j−1 = 1
−1, otherwise.

(1)

This rule ascribes a price increase (decrease) over a given time bar to buying (selling) pressure and
classifies the full transaction volume during this bar as active buying (selling) volume. While this will
mis-classify some transaction whenever a time bar contains both active buys and sells, ELO deem this
approach, based on aggregated order flow, superior to assigning trade direction based on an actual tick
rule, where each individual transaction is classified according to the price change from one tick to the
next. If we need to be explicit about the choice of time grid, we can write (T δ

j ,P
δ
j ,N

δ
j ) and bδ

j .
Second, we define the volume bins. We let 0 = N0 < N1 < N2 . . . represent an equally-spaced grid

with the fixed volume step ν , so that Nk = ν · k and nk = Nk−Nk−1 = ν . Our data are now represented
by triplets (Tk,Pk,Nk), where Tk and Pk are, respectively, the calendar time and trade price associated
with the last contract included in volume bin k for k = 1, . . . ,Kν , and Kν is the number of complete
non-overlapping volume bins of size ν in the sample. As for classification rule (1), the binary variable
bk classifies the entire order flow within the kth volume bin, k = 2, . . . ,Kν . If we need to be explicit
about the volume grid, we write (T ν

k ,Pν
k ,N

ν
k ) and bν

k . Furthermore, transaction data may be seen as a
limiting case with a bin size of only one contract, i.e., ν = 1.

In summary, the classification rule (1) assigns a buy or sell indicator to each transaction throughout
the sample, but they are bundled into sequences of unidirectional buys and sells according to the time
bar or volume bin they reside in. Whether this rule dominates alternative classification schemes for
constructing proxies for order flow imbalances over longer time spans is in part an empirical question.
We provide evidence for alternative values of δ or ν below.

3.2 The volume clock, the OI measure, and TR-VPIN

Following ELO, we now introduce a volume-based time-scale transformation. Rather than monitoring
the market dynamics in calendar time, we employ a volume bucket, V , defined as a fixed number
of traded contracts. Thus, each bucket represents an equidistant increment to trading volume, but
potentially highly varying periods of calendar time. Throughout our analysis, we set V = 40,000
futures contracts, corresponding roughly to (1/50)th of the average daily trading volume. This choice
mimics the leading case adopted by ELO.

Each volume bucket comprises a set of aggregate transaction triplets, each representing a different
block of trading volume. For underlying triplets defined from one-minute bars, we end up splitting bars,
that comprise transactions straddling adjacent volume buckets, into separate pieces so that each fraction
belongs to a unique bucket. We generically denote the number of blocks within a volume bucket by Q,
and we define the relative size of each trade block in the bucket as wq = nq/V for q = 1, · · · ,Q, where
nq = Nq−Nq−1 indicates the number of contracts traded in block q. We obviously have, 0 ≤ wq ≤ 1
and w1 + · · · +wQ = 1. Moreover, since every trade is classified as a buy or sell, we may define V B

and V S as the number of contracts classified as bought and sold, respectively, over the volume bucket,
so that, V B +V S =V .

Utilizing the binary trade indicator, we construct the signed order imbalance measure, SOI,

SOI = w1 b1 + · · · +wQ bQ =
V B−V S

V
=

V B−V S

V B +V S . (2)
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The focus of ELO (2011a) is on the absolute order flow imbalance relative to the total volume for
the given bucket. They define their order imbalance measure as,

OI = |SOI| = |V
B−V S|

V
=
|V B−V S|
V B +V S . (3)

ELO construct the TR-VPIN metric as the moving average of the order imbalance for the preceding
L volume buckets of size V , so the computation exploits the last L ·V contracts traded. Formally, let
τ0 ≤ τ1 ≤ . . . ≤ τL = t denote the sequence of times corresponding to the endpoints of the relevant
volume buckets prior to time t, and let OI` denote the order imbalance measure for the volume bucket
that ends at time τ`. Then, making the dependence on the underlying time bar explicit, we define,

T R-V PINδ
t =

1
L

L

∑
`=1

OIδ
` . (4)

This TR-VPIN metric constitutes the “toxicity” measure constructed according to the ELO (2011c)
algorithm. It is obtained for a given set of transactions over a specific sample and reflects underlying
choices of the volume bucket, V , the time bar, δ , the trade classification indicator b, and the length
of the moving average, L. These parameters interact in a complex manner to determine both the level
and the dynamic behavior of the metric. The following section provides a more detailed analysis of the
basic properties of TR-VPIN.

4. Basic properties of TR-VPIN measures

ELO (2011a) emphasize that trade time, not calendar time, is the relevant metric for sampling
the information set. For example, return volatility across volume buckets is more homogeneous than
across calendar time intervals. Hence, we maintain a fixed volume bucket, V , in computing TR-VPIN
throughout. In addition, they rely on a rather long moving average to smooth the series and enhance
the signal relative to any transitory noise. Thus, we abstain from any inquiry into this aspect of the
TR-VPIN definition and fix L = 50. Instead, we focus on the critical building block for TR-VPIN,
namely the behavior of the OI measure for given bucket size, V .

Since our transactions are ordered, the set of trades belonging to a specific bucket is fixed once
we decide where to initiate the sampling. For now, we take this starting point as given. Consequently,
the variation in the OI measure stems solely from how we assign the buy–sell indicators to individual
trades. As explained earlier, ELO (2011a) use one-minute time bars, computing the measure as if all
trades within the same bar operate on the identical side of the market.6

The main task of this section is to shed light on the consequences of adopting a time bar as the
basic ingredient for trade classification within a volume clock scheme. This design feature induces an
extreme degree of heterogeneity into the order imbalance measure, driven by the trading intensity. An
increase in trading implies there are more trades per time bar and, thus, a smaller number of bars, Q,
involved in computing the OI measure within a volume bucket. This raises the expected value of the
OI measure, independent of any characteristic of the underlying trades. As a result, the OI measure is
mechanically correlated with trading volume and, thus, also with return volatility, irrespective of the
actual order imbalances. In contrast, using tick or fixed volume bin sampling generates homogeneous
distributions for the quantities of interest. We first illustrate this point in a simple example.

6One rationale for using one-minute time bars is that commercial vendors often make data available to customers in this
format as part of their regular data subscription services.
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4.1 A simple illustration

Imagine we operate with a volume bucket of V = 1,000. The last price prior to 9:37 is 10.01, and
the last observed trade indicator is a buy. For the trading period which has its first time bar recorded at
9:38, the volume bucket may contain six separate one-minute time bars. For illustration, using δ = 60
seconds, we assume the triplets (T δ

q ,Pδ
q ,n

δ
q ) = (Tq,Pq,nq) take the form,

(I) {(Tq,Pq,nq)}q=1...6 =

{(9:38:00,10.01,100);(9:39:00,10.02,200);(9:40:00,10.02,200);
(9:41:00,10.01,300);(9:42:00,10.01,100);(9:43:00,10.00,100)}

The order imbalance for this bucket is OI = |100+200+200−300−100−100 |/1,000 = 0.

Now, assume the trading is twice as intensive, meaning that the time between trades shrinks by a
factor of two, so that the same underlying trades now form the following time bars,

(II) {(Tq,Pq,nq)}q=1,2,3 = {(9:38:00,10.02,300);(9:39:00,10.01,500);(9:40:00,10.00,200)}

The order imbalance measure then becomes OI = |300−500−200 |/1,000 = 0.40.

Next, imagine the trading is three times as intensive as in the original case, so the trades now
combine to form only two one-minute bars,

(III) {(Tq,Pq,nq)}q=1,2 = {(9:38:00,10.02,500);(9:39:00,10.00,500)}

The order imbalance measure is then OI = |500−500 |/1,000 = 0.

Now, increasing the original trading intensity fourfold, the first four trade blocks are combined into
the first time bar, containing 800 contracts. The next 200 contracts will belong to a second time bar.
Assuming the last trade price within this bar remains at 10.00 or below, we obtain,

(IV) {(Tq,Pq,nq)}q=1,2 = {(9:38:00,10.01,800);(9:38:30,10.00,200)}

The order imbalance measure is OI = |800−200 |/1,000 = 0.60.

If the trading intensity reaches fivefold the original level, the first five trade blocks form the first
new time bar, containing 900 contracts. The last 100 contracts will belong to a second time bar. Under
the assumptions above, we have,

(V) {(Tq,Pq,nq)}q=1,2 = {(9:38:00,10.01,900);(9:38:12,10.00,100)}

The order imbalance measure now becomes OI = |900−100 |/1,000 = 0.80.

Finally, if the trading intensity is sixfold or more than in the original scenario, then we only have
one time bar in the volume bucket,

8



(VI) {(T1,P1,n1)} = {(9:38:00,10.00,1000)}

We now have OI = |−1,000 |/1,000 = |−1.0 | = 1. This trading intensity may appear unrealistic,
but it is actually typical of turbulent market conditions, including the flash crash, when trading is highly
elevated for prolonged periods of time. This mechanically generates a sequence of OI measures taking
the value of unity. The only moderating effect during such periods is when the time bars are split
across adjacent volume buckets. The OI measure then becomes a volume-weighted average of the
trade direction indicators for the relevant fractions of the two bars.

Consequently, for the sequence of trades above, the SOI measure varies from -1 to 0.8 across the
scenarios, while OI fluctuates from 0 to 1. Obviously, the order imbalance measure associated with a
given bucket can be extraordinarily noisy – for the identical set of transactions, OI may take on values
in the full range between 0 and 1, depending on the trade intensity and how the boundary of the volume
buckets interact with the time bars. Moreover, it illustrates how the OI measure inflates as the trading
intensity rises. As the speed of trading grows, the number of time bars in the bucket declines and there
is less diversification of buy and sell indicators. In the limit, it becomes unity, irrespective of the actual
price path and the proportion of active buy and sell transactions in the bucket: OI degenerates into a
pure trading intensity measure.

What happens if we instead exploit a fixed bin (FB) size for volume, using, say, ν = 200? Assuming,
for simplicity, that the original sequence of aggregate trades in scenario (I) constitutes actual trades,
and each occur in the last second of the time bar, we obtain the following scenario,7

(FB) {(T ν
q ,Pν

q ,n
ν
q )}q=1...5 =

{(9:39:00,10.02,200);(9:40:00,10.02,200);(9:41:00,10.01,200);
(9:41:00,10.01,200);(9:43:00,10.00,200)}

The order imbalance for the bucket based on this bin size is then OI = |200+ 200− 200− 200−
200 |/1,000 = | −0.2 | = 0.2.

Notice that, in the fixed bin approach, the SOI (OI) statistic depends only on the given transaction
sequence. In our illustration, it remains -0.2 (0.2), irrespective of the intensity of trading, whereas
time bar OI may attain any value between zero and unity. Obviously, it also avoids any mechanical
correlation with trading volume, while TR-VPIN tends to rise as trading intensifies. In other words,
while TR-VPIN is updated in trade time, it is not computed according to a trade clock – calendar time
remains a critical determinant of the measure. In this sense, FB-VPIN is preferable as it stays true to
the notion that markets evolve in transaction time.

Of course, our illustration may be overly simplistic. The variation in trading intensity may be
informative in and of itself, and TR-VPIN may extract information about the state of the market from
such patterns. This could potentially render the awkward idiosyncratic variation in the time bar SOI
less prominent. We turn to a more formal analysis to address such questions.

7If the aggregate volume within each minute stems from numerous smaller trades, as is the case for the E-mini contract,
the splitting of individual large transactions into adjacent volume bins is much less of an issue. The improved granularity
would allow for more variability in the trade indicators, and thus help diversify the signed imbalances across volume bins,
typically resulting in a lower IO measure.
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4.2 Benchmark VPIN measures

We have seen that the OI measure may attain values across the entire [0,1] range for a fixed set
of underlying transactions. The effect arises from an interaction of the trading intensity with the time
bars. Since the VPIN is obtained as a moving average of the OI measure, it is evident that TR-VPIN
may be highly sensitive to variation in the trading pattern – even if the underlying order flow imbalance
(in trading time) is unchanged. This is a problem to the extent we cannot reliably associate movements
in TR-VPIN with shifts in order flow toxicity.

We address the above issue in several distinct ways. First, we seek to determine how the TR-VPIN
measure is expected to evolve given the observed variation in the trading pattern, but absent any
systematic order flow imbalance. We label such benchmark series “uninformed” VPIN (U-VPIN)
measures. Below, we develop two such benchmark measures which, by construction, are void of
systematic order flow imbalances, yet capture the effect of time variation in the trading pattern. We will
use these U-VPIN measures as controls for the impact of the trading pattern on VPIN in the absence
of toxic order flow. The evolution of the actual TR-VPIN metric relative to the benchmarks should
then reflect the component of TR-VPIN that is attributable to the systematic order flow imbalances,
or toxicity. Ultimately, however, it is possible that toxicity is also impacting the speed and size of
individual transactions. That is, the variation in the trading process may not be exogenous relative to
order flow toxicity. This motivates our second alternative VPIN metric, namely the fixed bin VPIN
(FB-VPIN).8 This measure exploits fixed volume bins within each volume bucket, as exemplified in
Section 4.1. It annihilates the impact of variation in the trading intensity on the individual OI statistics,
while retaining the feature that VPIN is updated in event time. In combination, the U-VPIN and
FB-VPIN measures allow us to gauge the relative impact of different facets of the market dynamics
on the TR-VPIN metric, as implemented in ELO (2011a, 2011b, 2011c). Second, we seek to establish
whether the TR-VPIN measures carry incremental information regarding future market disruptions
beyond what is implied by market activity variables known to convey information regarding future
return volatility, such as the raw volume and implied volatility, VIX, series.

Before introducing our U-VPIN measures, it is useful to portray a setting, entirely void of market
microstructure features, for which volume and volatility measures possess forecast power for return
volatility. Standard asset pricing models assume the price process constitutes a semi-martingale with
respect to the natural filtration generated by the past history of prices and trades. This ensures the
absence of arbitrage in a frictionless setting. It implies that any predictability, or drift, in the price
over short horizons is trivial relative to the size of the (unpredictable) return innovations. At the
same time, the setting is consistent with a large degree of predictability in trading volume and return
volatility. In fact, both series are often viewed as driven by a serially correlated latent information
flow variables so that they naturally become positively correlated.9 Moreover, since volatility and
volume both are highly persistent, lagged values of either series will be significant predictors of future
volatility. Obviously, this framework is void of microstructure foundations. It implicitly assumes that
fundamentals are incorporated into prices instantaneously, while trading reflects idiosyncratic liquidity
or saving needs that induce random buying and selling. This is evidently not a sensible model at the
ultra high-frequency level, but it does provide a benchmark with no role for systematic order flow
toxicity. The point is, of course, that we should require any useful crash predictor, including the VPIN
metric, to embed auxiliary information regarding short-term return fluctuations beyond what is attained

8In principle, we should refer to this measure as TR-FB-VPIN. However, we do not explore any BV-FB-VPIN measures
in this paper, so we retain the shorter abbreviation throughout.

9This account echoes the “mixture-of-distributions hypothesis” explored by, for example, Clark (1973), Epps and Epps
(1976), Tauchen and Pitts (1983), and Andersen (1996).
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Figure 3: Expected order imbalance versus number of time bars. The figure plots the expected order
imbalance as a function of the number of components, Q, used in the computation. The expectation is obtained
under the assumption of purely random and uninformed order flow and homogeneous trade sizes.

by volume or implied volatility variables.

4.2.1 Systematic variation in TR-VPIN due to trading intensity

We first explore the pure impact of variation in the trading intensity on the OI measure. For this
purpose, we assume, counter-factually, that the trading process induces an i.i.d. sequence of buy–sell
indicators, {bq}, taking on the values +1 and -1 with probability 1/2 each. In this setting, the expected
value of any future trade indicator is zero, i.e., E[bq] = 0. Moreover, to annihilate any heterogeneity
in trade size, we assume each time bar contains an equal amount of volume, i.e., wq = 1/Q. The only
variable systematically impacting OI is then Q, which varies directly with the trading intensity.

Within this simplified setting, we obtain an analytical expression for the expected OI measure
as a function of the number of time bars within a volume bucket. Letting this mapping be denoted
F(Q) = E(|SOI(Q)|) = E[OI(Q)], we document, in the Appendix, that:

F(Q) = E[OI(Q)] =
(2q)!

22qq!q!
, if Q = 2q, or Q = 2q+1 . (5)

Figure 3 plots this expected order imbalance function for different values of Q, with the latter
displayed on a log scale.

Intuitively, the order imbalance is non-increasing in Q, starting at unity for Q = 1. Moreover, we
note that F(2q) = F(2q+ 1) so, for example, F(2) = F(3) = 0.5, F(4) = F(5) = 0.375, and even
F(10) = F(11) = 0.246. Finally, as Q grows large, F(Q) approaches zero at the rate Q−

1
2 , as is also

evident in Figure 3. In fact, for Q large, we formally have,

F(Q) ∼

√
2

πQ
. (6)
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These expected OI measures, derived assuming no information asymmetry and no systematic order
imbalance, provide an extremely conservative benchmark for the OI measures. In reality, the volume
within individual time bars vary in size, and the expected order imbalance is strictly minimized when
volume is evenly distributed across the bars. For example, if Q = 2, but w1 = 0.9 and w2 = 0.1, the
expected order imbalance is 0.9, much higher than F(2) = 0.5, even in the absence of any systematic
order imbalance. In addition, the actual trade classification sequence, {bq}, will not be independent,
for a variety of reasons, which also increases the value of F(Q).

In order to contrast the F(Q) measure to TR-VPIN, it must be smoothed in a comparable manner.
Hence, as for the TR-VPIN definition in equation (4), we let τ1 ≤ . . . ≤ τL = t denote the sequence of
times corresponding to the endpoints of the relevant volume buckets prior to time t, and let Q` denote
the number of time bars included in the volume bucket that ends at time τ`. Then we define,

U1-VPINδ
t =

1
L

L

∑
`=1

F(Q`) . (7)

This measure is constructed assuming a homogeneous volume distribution and random order flow.
These assumptions are surely violated and either feature inflates the measure. Hence, U1-VPIN will
invariably be significantly smaller than TR-VPIN. Nonetheless, we use it to gauge, qualitatively, the
time series variation in the TR-VPIN measure we may expect solely due to changes in the trading
intensity. The label U1-VPIN indicates it is our initial “uninformed” VPIN measure. It does not exploit
any information about the price path or trade size distribution.

Finding 2: All else equal, the expected value of the OI measure is decreasing in Q. This implies,
importantly, that as trading intensifies, OI and the associated TR-VPIN measure will tend to rise in
concert with the decline in Q.

One corollary to Finding 2 is that persistent time variation in the trading intensity will induce
prolonged swings in the level of OI and the associated TR-VPIN, which are correlated with overall
trading volume, even in the absence of any systematic order imbalances or heterogeneity in trade size.

We again caution against the conclusion that observed time variation in trading intensity is unrelated
to order imbalances. It is, indeed, likely that a significant proportion of this variation is related to the
general market environment. The relevant question is rather whether the trade classification scheme
provides incremental information beyond what we can infer from the observable trading pattern.

Finding 3: All else equal, the level of OI, and hence the associated TR-VPIN, is monotonically
related to the length of the time bar, δ . In particular, adopting longer time bars (a larger δ ) leads to
higher TR-VPIN measures, as Q declines.

This result is no surprise. ELO (2011c) note one should compare only the relative size of TR-VPIN
measures over time, and not their levels. Our finding explicates the mechanism behind this feature. It
has one noteworthy implication: TR-VPIN should be calibrated to existing market conditions to allow
for meaningful intertemporal or cross-market comparisons. In particular, if the volume is trending, the
“effective” Q is shifting, and a corresponding change in the time bar is required to render the TR-VPIN
series stationary. Specifically, in the absence of any adjustment, a (positive) drift in volume will elevate
the average order imbalance and, inadvertently, signal an increasingly turbulent market environment
over time. Thus, if the time bar is fixed, it is implicitly assumed that volume has no time trend.

4.2.2 Systematic variation in VPIN attributable to the trading pattern

The U1-VPIN measure captures only the impact of the number of terms used in computing OI. Any
variation in volume across the bars will increase the measure. Since the trading intensity varies strongly
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over time, we develop an alternative benchmark that captures the impact of volume heterogeneity on
the expected OI measure. Direct analytic expressions are no longer feasible. However, we note that the
expected OI measure represents an L1 norm applied to the signed order imbalance measure,

E[OI] = E [ |SOI | ] = E [ |w1 b1 + · · · +wQ bQ | ] . (8)

It turns out that the corresponding L2 norm is tractable under the maintained assumption that the
{bq} sequence is i.i.d. and symmetric. That is, we can instead exploit the measure,√

E [SOI2] =

√
E
[
(w1 b1 + · · · +wQ bQ )2

]
=
√

w2
1 + · · · +w2

Q . (9)

This expression is tantalizingly simple. Given the observed volume distribution, w = (w1, . . . , wQ)
′,

for a given volume bucket, this expected order imbalance measure equals the Euclidean norm of w. Due
to Jensen’s inequality, we have the relation,

E[OI(w)] = ||SOI||1 ≤ ||SOI||2 = |w | ≡
√

w2
1 + · · · +w2

Q .

Hence, this metric provides an upper bound on the impact of the trading pattern on expected OI,
provided the trade indicator follows an i.i.d. process. In reality, we expect positive serial correlation in
the trade indicator, implying that OI may be smaller or larger than |w |, depending on the size of the
Jensen inequality bias versus the serial correlation in {bq}.

In summary, the time variation in the L2 norm provides a gauge for the variation in the order
imbalance that is attributable to the characteristics of the trading process and not directly associated
with the trade indicator sequence, {bq}. By the same token, any systematic residual variation in the OI
measure is likely due to asymmetries in the active order flow, as captured by the {bq} indicators.

As for the other order imbalance measures, we convert the |w|measure into a TR-VPIN style metric
by computing a backward-looking moving average. Letting w` denote the volume weight vector for the
bucket that terminates at time τ`, we define,

U2-VPINδ
t =

1
L

L

∑
`=1
|w` | . (10)

In summary, U1-VPIN is based on an L1 norm for the expected order imbalance measure, while
U2-VPIN is based on a related L2 norm. Moreover, like U1-VPIN, U2-VPIN is “uninformed” about
the actual price path, and thus the trade indicator sequence, utilized by TR-VPIN.

For a given distribution of Qi across buckets, U2-VPIN is minimized when the volume in the bars
of each bucket is identical, while it is maximized when volume is heavily unbalanced, i.e., one volume
weight is near unity and the remainder are negligible. Thus, the measure captures variation in the
heterogeneity of the observations in the volume buckets. At the same time, U2-VPIN is constructed
assuming a random trade direction, so its variation cannot be attributed directly to order flow imbalances.

Finding 4: All else equal, the expected value of OI, as well as the associated tick rule VPIN
measure, is increasing in the degree of volume heterogeneity across time bars.

Finding 4 rationalizes the relatively large discrepancy in level between our two U-VPIN measures.
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4.2.3 Removing the impact of trading intensity via fixed volume bin VPIN

The ELO (2011a, 2011b, 2011c) TR-VPIN metric relies on time bars which renders the measure
highly sensitive to variation in volume. One way to avoid this mechanical dependence on the trading
intensity is to compute the OI measure from equally-sized volume bins instead. In fact, as argued
above, this approach is natural given the notion that activity within a high-frequency setting should be
measured in trading time rather than calendar time.

Following the notation in Section 3.1, the basic data triplets now consist of (Tk,Pk,Nk)= (T ν
k ,Pν

k ,N
ν
k ),

where Tk and Pk are, respectively, the calendar time and trade price associated with the last contract
included in volume bin k, and the cumulative volume within each bin is Nk = ν ·k. Hence, each volume
bin contains, ν = Nk−Nk−1, traded contracts, for k = 1, . . . ,K. In our empirical work, ν = 1, ν = 1,000
or ν = 5,000. The first case corresponds to transaction data, while the latter two cases imply that each
volume bucket with V = 40,000 contains either 40 or 8 separate bins. These figures span the average
number of time bars included in the ELO OI measure across the typical trading day.

Each bucket now comprises Q = V/ν bins, each containing an equal fraction, wν = ν/V = 1/Q,
of the overall volume within the bucket. We apply the classification scheme (1) to each bin, and define
the “fixed bin” signed order imbalance, SOIν , for a volume bucket as follows,

SOIν = w1 b1 + · · · +wQ bQ =
b1 + · · · + bQ

Q
=

V B−V S

V
. (11)

We let τ1 ≤ . . . ≤ τL = t be the endpoints of the volume buckets prior to time t and SOI ν
` be the

signed order imbalance for the bucket terminating at τ`. We define the “Fixed-Bin” VPIN as,

FB-VPINν
t =

1
L

L

∑
`=1
|SOI ν

` | . (12)

This FB-VPIN measure retains the dependence on the classification scheme, but it breaks the
mechanical relationship with trading intensity. As such, it is useful in identifying the variation in
TR-VPIN that stems from order imbalances measures based on a genuine trading time scale.10

5. Empirical results for the full sample

5.1 Summary statistics for the trading in E-mini S&P 500 futures

Table 1 provides descriptive summary statistics for the trading of the E-mini S&P 500 futures
contract over our sample.

Evidently, the market is extremely liquid. There were on average more than 185,000 trades and in
excess of 2,165,000 contracts exchanged per day. This implies an average transaction size of around
11.7 contracts. During the regular trading hours, there were about 390 transactions per minute or
6.5 transactions per second. Although the numbers are much lower outside regular trading hours, the
activity is still impressive, with a trade consummated about once every two seconds.

10In principle, one can use the approach of the previous subsection to construct “uninformed” versions of FB-VPIN, which
not only annihilate the mechanical relationship with trading intensity but also remove the dependence on price information.
However, the corresponding measures, U1-FB-VPIN and U2-FB-VPIN, will be constants, because each volume bucket now
consists of the same number (Q) of equal size bins, implying,

U1-FB-VPINν
t ≡ F(Q), and U2-FB-VPINν

t ≡
1√
Q
.
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Table 1: Descriptive trading statistics for the E-mini S&P 500 futures contract

All Regular Overnight Holiday

Volume (1 day), 000s 2166.53 1949.48 263.72 137.94
# Trades (1 day), 000s 185.45 156.18 33.07 20.56
Volume (1 min), 000s 1.52 4.81 0.26 0.10

# Trades (1 min), 000s 0.13 0.39 0.03 0.01
Trade Size 11.68 12.48 7.98 6.71

# Days 667.00 652.00 652.00 15.00

Order size: average daily percentiles

Min 10% 50% 75% 90% 99% 99.9% Max

All 1.0 1.0 2.1 6.3 23.6 187.5 539.0 1654.9

Notes: The table reports summary statistics for the trading in E-mini S&P 500 futures contract over the period
January 2008 - July 2010. The data are reported separately for Regular Trading Hours (Regular, 8:30-15:15),
Overnight Trading Hours (Overnight, 15:15-8:30), Holiday Trading Hours (Holiday, exchange holidays), and
combined hours (All).

Our choices of L = 50 and V = 40,000 contracts ensure a close approximation to the setting of ELO
(2011c). In particular, V represents about (1/50)th of the average daily volume (42,320 contracts), and
TR-VPIN is computed based on a number of transactions close to that of a typical trading day.11

Another critical dimension is the number of transactions per time bar. It is a major factor in
determining the reliability of the trade classification scheme and the number of blocks used in computing
the OI measure. A time bar of one minute, on average, encompasses 390 separate transactions during
regular trading hours. These will all be classified as active buys or active sells depending on the price
change over the one-minute period. Clearly, many of these trades are misclassified, as small sequences
of active buys and sells often alternate in rapid succession.12 Nonetheless, it is an empirical question
whether the classification scheme provides useful insights into the effective order flow imbalance, and
we explore this issue below. However, it also motivates us to analyze the behavior of the TR-VPIN
metric across alternative choices of time bars for which the degree of trade misclassification will vary.
Second, there will be an average of 8–9 time bars in each volume bucket during regular trading hours.
Moreover, depending on the trading intensity, this number fluctuates anywhere from 30 down to 1.
Inspecting Figure 3, it is evident that the expected OI measure is highly sensitive to the number of bars
in the volume bucket, Q, as reflected in the steepness of the curve. In other words, TR-VPIN will, by
construction, vary dramatically over time in response to persistent variation in volume, independently
of whether or not the transactions are evenly balanced across buys and sells.

11ELO (2001c) have fewer transactions in their sample as they use V = 39,351 contracts. We let V be a multiple of 5,000
to guarantee that buckets constructed from bins of ν = 1,000 and 5,000 contracts contain an integer number of bins.

12The first order tick return autocorrelation is around -0.41, while the next four autocorrelations also are negative, albeit
small. This suggests a rapid alternation between transactions consummated at the bid and ask quote. While it is not fool-proof
to associate a down-tick with an active sell and an up-tick with an active buy, it should not induce a dramatic bias as the order
book depth typically is much deeper than the volume associated with individual transactions. Consequently, the best bid
and ask quotes are generally relatively stable compared to the oscillation of transactions between the bid and ask. Hence,
sequences of hundreds of transactions typically involve a large number of both buys and sells.
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Finally, we note the extreme right-skewed trade size distribution. In a typical time bar containing
390 transactions, about 200 will involve the exchange of only one or two contracts. However, about 40
involve more than 20 contracts each, and a few entail exchanges of hundreds of contracts in a single
transaction. While this size heterogeneity will not have a strong bearing on one-minute time bar OI, it
will impact measures computed from smaller time bars or volume bins.

5.2 Comparing alternative tick rule VPIN measures

TR-VPIN is subject to distortions stemming from the time variation in volume, inhomogeneity of
the volume weights across bars, and random variation in the trade classification scheme. We assess the
significance of these factors by comparing TR-VPIN computed over alternative time bars with our U1-,
U2-, and FB-VPIN measures, as each convey information about the forces impacting TR-VPIN.

Figure 4 displays TR-VPIN for δ = 10, δ = 60, and δ = 300 plotted alongside the corresponding
U1-VPIN and U2-VPIN. The latter series represent the expected values of TR-VPIN, assuming random
trade classification and conditional on the observed trading pattern. Finally, the bottom panels provide
the FB-VPIN series, computed for volume bins of ν = 1, i.e., tick data, ν = 1000, and ν = 5000. Recall
that the FB-VPIN series eliminate any mechanical time series correlation with trading intensity.

Figure 4 highlights a number of features. First, as expected, TR-VPIN increases significantly as the
bar grows, and FB-VPIN rises as the bins lengthen. In both cases, the effective Q drops. Second, it is
evident that aggregated TR-VPIN measures are strongly correlated with U1-VPIN and U2-VPIN, and
the association grows stronger with the aggregation level, from δ = 10, through δ = 60 to δ = 300. In
fact, for the latter two cases, TR-VPIN and U2-VPIN almost coincide and have near identical trends and
spikes. Moreover, U1-VPIN displays the same qualitative time series variation even if, by construction,
it attains lower values. In contrast, the FB-VPIN series are much less aligned with TR-VPIN. Third, the
extreme values attained by the U-VPIN and TR-VPIN series on May 6, 2010, are striking, since none
of the FB-VPIN series attain an unusual value. The discrepancy occurs even if the number of volume
bins with ν = 1,000 and ν = 5,000 closely match that used, on average, by TR-VPIN with δ = 10 and
δ = 60, respectively.

Finding 5: TR-VPIN is highly correlated with U1-VPIN and U2-VPIN and the correlation
increases with the length of the time bar. Hence, the trade classification rule is largely negligible
as a determinant for the time series variation of TR-VPIN.

Finding 6: TR-VPIN behaves dramatically differently from FB-VPIN, even if the identical
volume buckets are used for computation. In particular, only TR-VPIN attains an exceptional value
on May 6, 2010.

Complementary evidence is provided by Table 2. It reports the sample correlations between the
TR-VPIN measures for different time bars as well as correlations with FB-VPIN, the daily trading
volume, and VIX. We already noted that large time bars tend to induce a mechanical correlation
with trading volume. The VIX index is incorporated as a reference for the subsequent discussion
of TR-VPIN as a predictor for future return volatility.

Table 2 confirms the main conclusions from Figure 4 and brings out new features. First, there is
strong and generally increasing correlation between the TR-VPIN and U-VPIN measures as δ grows:
0.67–0.74 for δ = 10, 0.77-0.80 for δ = 60, and around 0.84 for δ = 300.

Second, there is a dramatic break in the VPIN-volume correlation as we move from TR-VPIN to
FB-VPIN. For TR-VPIN, the positive correlation is not surprising, even if the magnitude might be. It
is a manifestation of Finding 2. The main insight is rather that the FB-VPIN measures computed from
relatively small bins are negatively correlated with volume. Moreover, these (absolute) correlations
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Figure 4: The evolution of alternative VPIN measures. The top three rows plot the daily maximum values of
VPIN (black), U1-VPIN (L1 metric, dark gray), and U2-VPIN (L2 metric, light gray) for δ = 10, 60, and 300
seconds. The bottom panels depict FB-VPIN for ν = 1 (black), 1000 (dark gray), and 5000 (light gray).

drop in a monotone fashion as the size of the volume bins grow. Since FB-VPIN annihilates the impact
of the trading intensity, this suggests that the trade indicators are largely unrelated to overall trading
volume. That is, to the extent TR-VPIN captures order imbalances, it is almost exclusively due to
the size distribution, while the trade indicators are near irrelevant. This is, of course, also consistent
with the very high degree of correlation between the TR-VPIN and U-VPIN measures, and serves to
corroborate Finding 5. In contrast, TR-VPIN is only weakly correlated with FB-VPIN, as is evident
from the entries in the left part of the bottom panel of Table 2.

Third, TR-VPIN displays positive correlation with VIX, although it is noticeably weaker than the
TR-VPIN-volume correlation. Given that volume and volatility are known to be related, as exemplified
by our sample correlation of 0.52, the correlation between TR-VPIN and VIX is anticipated. In contrast,
FB-VPIN is strongly negatively related to VIX. This feature is surprising! It suggests that TR-VPIN,
measured consistently in trading time, is inversely related to the (long run) volatility level. Moreover,
the effect is again strongest for the smaller bins and dissipates as the transactions are aggregated. The
relationship is highly significant for transaction VPIN, suggesting a systematic interaction between
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Table 2: Correlations between various VPIN and market activity variables

δ = 10

TR-VPIN U1-VPIN U2-VPIN Volume VIX

TR-VPIN 1.00 0.50 0.06
U1-VPIN 0.67 1.00 0.83 0.47
U2-VPIN 0.74 0.86 1.00 0.61 0.14

δ = 60

TR-VPIN U1-VPIN U2-VPIN Volume VIX

TR-VPIN 1.00 0.62 0.24
U1-VPIN 0.77 1.00 0.85 0.47
U2-VPIN 0.80 0.98 1.00 0.82 0.40

δ = 300

TR-VPIN U1-VPIN U2-VPIN Volume VIX

TR-VPIN 1.00 0.71 0.37
U1-VPIN 0.83 1.00 0.83 0.44
U2-VPIN 0.85 0.96 1.00 0.82 0.47

TR-VPIN

FB-VPIN δ = 10 δ = 60 δ = 300 Volume VIX

ν = 1 0.33 0.16 -0.03 -0.24 -0.58
ν = 1K 0.33 0.19 0.04 -0.09 -0.40
ν = 5K 0.34 0.29 0.14 0.04 -0.21

Notes: The table reports correlations of TR-VPIN, U1-VPIN, and U2-VPIN for δ = 10, 60, and 300 sec, one-day
trading volume, VIX, and FB-VPIN for ν = 1, 1K, and 5K. The sample period is January 2008 - July 2010.

uncertainty or turmoil in the market and the trade classification scheme in equation (1). The slow
dissipation of this relation with the aggregation level may indicate that the same phenomenon remains
at work, but the trade indicators become less reliable, as transactions are bundled into larger blocks. We
are led to the surprising hypothesis that volume-clock based measures of VPIN are negatively related
to trading volume and return volatility. By the same token, TR-VPIN, in general, displays positive
correlation with VIX only because it, by construction, covaries strongly with the trading intensity.

Finding 7: Time bar TR-VPIN is strongly correlated with volume and weakly correlated with
VIX. In contrast, FB-VPIN is weakly, and predominantly negatively, correlated with volume, and
strongly negatively correlated with VIX. Thus, the TR-VPIN–volatility correlation largely reflects a
mechanical association between TR-VPIN and trading intensity.

In summary, FB-VPIN displays an entirely different dynamic behavior than TR-VPIN, raising the
question of whether these VPIN variants capture fundamentally distinct features of the trading process.
We explore the negative association between FB-VPIN and VIX in more detail later.
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Table 3: Correlations of future absolute returns with various measures

TR-VPIN U1-VPIN FB-VPIN

δ=10 δ=60 δ=300 δ=10 δ=60 δ=300 ν=1 ν=1K ν=5K Volume VIX

|rt,t+1| 0.07 0.15 0.21 0.27 0.27 0.26 -0.30 -0.20 -0.08 0.31 0.46
|rt,t+10| 0.04 0.14 0.22 0.27 0.28 0.27 -0.34 -0.24 -0.11 0.32 0.49
|rt,t+50| -0.01 0.09 0.18 0.23 0.24 0.22 -0.35 -0.24 -0.15 0.29 0.47
|rt,t+250| 0.06 0.17 0.25 0.30 0.30 0.30 -0.32 -0.24 -0.08 0.37 0.54

Notes: Volume is one-day trading volume. The sample period is January 2008 - July 2010.

5.3 VPIN as a forecast of future short-term return volatility

ELO (2011a) suggest that TR-VPIN may be useful for predicting impending turmoil in financial
markets. They provide evidence that TR-VPIN with δ = 60 is correlated with future volatility, and that
the correlation is stronger for more extreme volatility realizations. These observations are consistent
with the findings above, where we also document a positive, albeit somewhat weak, correlation between
the TR-VPIN metric and concurrent VIX. However, as suggested by ELO (2011c), it may be important
to distinguish short-term order imbalance or toxicity induced volatility, which may occur within the
current trading day and only last, say, a few hours, versus the broader volatility expectations for the
coming month, as reflected in the VIX index. Consequently, this section explores how well TR-VPIN
performs as a forecast variable relative to other standard volatility predictors. Moreover, we seek to shed
additional light on the mechanism that generates a correlation between TR-VPIN and future volatility.

Table 3 provides a first overview of the evidence. It tabulates the correlations between alternative
predictor variables and future cumulative absolute returns over four different horizons, ranging from
1 to 250 volume buckets, corresponding to an average of a few minutes to five full trading days.
The candidate forecast measures include TR-VPIN and U1-VPIN obtained from different bar lengths,
FB-VPIN obtained from different bin sizes, along with lagged daily volume, and the VIX index.

The raw correlations suggest that TR-VPIN provides a comparatively poor forecast. The TR-VPIN
correlations with future volatility, at all horizons, are uniformly below those associated with U1-VPIN,
even though the only difference between the two is the trade classification scheme. Taken at face value,
it implies that the classification rule induces variation in TR-VPIN that lowers its correlation with
future volatility, relative to the random classification associated with U1-VPIN. One explanation is that
lagged daily volume is more highly correlated with future volatility than TR-VPIN. Since U1-VPIN,
in turn, is more strongly correlated with volume than TR-VPIN, this corroborates the hypothesis that
TR-VPIN largely predicts future return volatility due to its mechanical correlation with trading volume.
Furthermore, we note that VIX, by far, is the variable most strongly correlated with future volatility.
Finally, the strong negative association between FB-VPIN and future volatility is striking. The relation
is strongest for small bins and declines as volume is aggregated into larger bins. These findings are
consistent with the negative correlation between transaction VPIN and VIX, discussed in Section 5.2.

To more formally assess the association between TR-VPIN and future realized volatility, we quantify
the predictive performance within a regression setting where we control for the impact of auxiliary
variables. We focus on TR-VPIN measures with δ = 60, but the qualitative findings are identical for
other time bars. Table 4 summarizes the evidence for a representative set of regressions.

The results are clear cut. From regression one in the first column of either panel of Table 4, we see
that there, indeed, is a highly significant relationship between TR-VPIN and future volatility, although
the predictive power is limited as reflected in the adjusted R2 of about 2% and 8%, respectively,
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Table 4: Forecast regressions for absolute return

Panel A: One-period forecast

Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 Reg 9 Reg 10

Const. -0.01 -0.16 0.02 -0.02 -0.12 0.06 -0.08 -0.10 -0.05 -0.07
( -0.38) ( -6.12) ( 1.92) ( -4.21) ( -4.49) ( 2.91) ( -5.68) ( -6.67) ( -6.91) ( -4.23)

TR-VPIN 0.49 -0.44 -0.15 0.17 -0.01 -0.01
( 6.97) ( -5.64) ( -2.38) ( 4.95) ( -0.33) ( -0.18)

U1-VPIN 1.22 1.69 0.38 0.11
( 12.18) ( 14.68) ( 5.45) ( 1.28)

Vol×10−7 0.63 0.69 0.20 0.16
( 12.12) ( 12.49) ( 6.83) ( 3.81)

VIX×10−2 0.60 0.58 0.55 0.54 0.53
( 33.66) ( 35.99) ( 32.03) ( 34.31) ( 32.42)

R̄2 2.41 7.58 8.93 21.25 8.36 9.07 21.53 21.76 21.90 21.92

Panel B: 50-period forecast

Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 Reg 9 Reg 10

Const. 0.00 -0.15 0.02 -0.02 -0.11 0.08 -0.06 -0.09 -0.04 -0.04
( 0.15) ( -6.14) ( 2.16) ( -4.08) ( -4.41) ( 4.03) ( -5.72) ( -6.83) ( -7.23) ( -3.61)

TR-VPIN 0.46 -0.47 -0.20 0.13 -0.06 -0.05
( 7.15) ( -6.67) ( -3.50) ( 4.85) ( -1.70) ( -1.47)

U1-VPIN 1.18 1.69 0.38 0.08
( 12.62) ( 15.32) ( 6.39) ( 1.07)

Vol×10−7 0.62 0.71 0.19 0.18
( 12.67) ( 13.07) ( 7.49) ( 5.03)

VIX×10−2 0.59 0.58 0.55 0.53 0.53
( 37.14) ( 38.81) ( 36.71) ( 37.64) ( 36.84)

R̄2 7.97 27.23 33.64 78.35 30.71 34.57 78.97 79.82 80.50 80.54

Notes: The figures represent OLS regression coefficients; t-statistics based on HAC-standard errors, constructed
with 50 lags, are reported in parentheses. TR-VPIN and U1-VPIN are for δ = 60 seconds; “Vol” is the one-day
backward trading volume. The forecast horizon is one volume bucket (“one period”) and fifty volume buckets
(“50 periods”), respectively. The sample period is January 2008 - July 2010.

for the two forecast horizons. The second regression presents the corresponding regression results
for U1-VPIN. The explanatory power rises by a factor of more than 3! Given the high correlation
between the two measures, this once more suggests that the variation in trading activity, as reflected
in U1-VPIN, is the underlying source of volatility predictability: the modification of the statistic to
also reflect the trade classification scheme, as done in TR-VPIN, but not U1-VPIN, is detrimental to
forecast performance. This brings us to regression three, which documents another improvement from
simply forecasting future volatility with the one-day lagged trading volume. The explanatory power is
now about four times that obtained with TR-VPIN. Along similar lines, column six demonstrates that
TR-VPIN has no – even negative – auxiliary explanatory power in forecasting return volatility once
we control for the trading activity. Obviously, the two regressors are strongly correlated, rendering
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the point estimates somewhat unreliable, but the minimal increase in the overall explanatory power,
relative to the univariate volume regression in column three, confirms the lack of incremental predictive
content of TR-VPIN. Finally, regression four shows that the VIX index provides superior forecasts
relative to trading volume.13 Completing the picture, regression five shows that U1-VPIN also crowds
out TR-VPIN as a predictor for future volatility. The minimal increase in explanatory power relative to
regression two again confirms the lack of incremental predictive power in TR-VPIN. Finally, regressions
7-10 reveal that the trading activity variables do contain useful information for future return volatility
over and above the VIX measure, although the improvements in explanatory power is marginal. As
before, the TR-VPIN metric is the one with the weakest predictive power, and it is insignificant when
included in regressions containing other trading activity related variables, e.g., regressions 8 and 10.

Finding 8: The TR-VPIN metric is, in general, much less robustly correlated with future short-term
realized volatility than regular volatility predictor variables. Moreover, it is less correlated with future
return volatility than the corresponding U1-VPIN measure, suggesting that the trade classification rule
actively degrades the volatility forecast content of VPIN.

Finding 9: The evidence is consistent with the hypothesis that the TR-VPIN metric is weakly
correlated with future return volatility because of its correlation with trading volume. Once we control
for trading volume, TR-VPIN is, if anything, negatively related to future return volatility.

5.4 On the behavior of transactions VPIN

Perhaps our most striking finding is that transaction and FB-VPIN produce opposite conclusions
of those obtained via TR-VPIN. The effect of moving from time bars to tick or volume bin data is so
pronounced that there must be a rational explanation. We provide initial observations on the issue, but
do not pursue this at length as it would take us outside the scope of the present work.

ELO (2011c) argue that the results obtained from tick data are so counterintuitive that, a priori, they
should be disregarded. They suggest the seemingly perverse results stem from massive misclassification
at the high-frequency level. This is not obvious, however. In some respect, tick data provide the best
opportunity to minimize the effects of trade misclassification, given that the market, most of the time,
operates with a well-defined spread of one to two ticks. In this scenario, it is usually correct to associate
an up-tick with an active buy and a down-tick with an active sell. The classification of zero tick change
transactions, which constitute a large proportion of the observations, is more dubious. As the best bid
and ask prices shift over time, the classification rule will mislabel a number of these trades. However,
given the oscillation between up- and down-tick transactions, these mistakes will typically not produce
long sequences of errors, and those that do occur will be mitigated through diversification via the
averaging across a huge set of transactions. For example, with V = 40,000, there are thousands of
transactions in a typical bucket and random misclassifications largely wash out.

The use of transaction data has additional benefits. First, it avoids assigning the same trade direction
to hundreds of transactions within large blocks, and thus likely misclassifying close to half of them.
Second, the use of transaction data eliminates the dependence on initial conditions, as the classification
of any given trade now is independent of the location of the volume buckets.

Given the apparent advantages of using tick data, what is behind the curious empirical results
obtained from transaction- and FB-VPIN measures? In particular, why is transaction VPIN strongly
negatively correlated with volume and volatility, and why do these variants of VPIN drop rather than
soar during episodes like the flash crash? The following related facts provide a partial answer.

13This does not imply that VIX is an ideal predictor of future volatility. It is feasible to construct even better forecast
measures using different aspects of the option data, see, e.g., Andersen and Bondarenko (2007).

21



One, the trade size is negatively related to return volatility. In fact, the correlation between VIX
and the average trade size is -0.38 for one volume bucket, it is -0.69 when assessed over 10 buckets,
and it is -0.86 when measured over 50 buckets. This relation likely reflects the lower depth of the limit
order book when volatility, and economic uncertainty, increases. For a given bucket, we thus have a
larger set of transactions as volatility increases, implying even better diversification of the trades, and a
tendency for transactions VPIN to drop. Nonetheless, this effect may be minor as transactions already
should be well diversified within buckets. Moreover, the drop in trade size does not explain why the
more highly aggregated FB-VPIN measures inherit similar features, as the volume bins are not directly
impacted by this effect. Thus, there is at least one more key to the puzzle.

Two, and importantly, for volume bins of 1,000 and 5,000 contracts, we find the daily probability of
a “continuation” in the trade indicator across consecutive bins to be 67% and 58%, respectively. These
persistence measures turn out to be strongly negatively related to the VIX index, with correlations of
-0.67 and -0.39, respectively. This is consistent with the hypothesis that an increase in volatility reduces
the proportion of zero tick change buckets and raises the frequency of oscillation between positive to
negative tick changes. If the tick changes are close to symmetric over short horizons, this leads to
a lower degree of persistence in the trade classification indicator, and hence a drop in the associated
VPIN measure. However, it is clear that other forces may be at play, and it requires a detailed study at
the transaction level to more systematically sort out the relevant factors.

Finding 10: Transaction- and FB-VPIN are negative correlated with volatility because the trade
classification produces less serially correlated trade indicators during volatile market conditions. This
leads to lower order imbalance measures as the volume bins (transactions) diversify more effectively
within the buckets. Nonetheless, the reason behind this negative relation between volatility and trade
classification is worthy of additional study.

6. Bulk volume VPIN

ELO (2012a) invoke a “bulk volume” (BV) classification strategy, using probabilistic assignment of
buys and sells from aggregated (bulk) volume. Specifically, the proportion of buy volume over the bar
of size δ is determined as a function of the price change. Letting Z(·) denote the cumulative distribution
function of a standard normal variate, for time bar j, the procedure takes the form,

V B
j = Z

(
∆Pj

σ

)
· Vj and V B

j − V S
j =

[
2 ·Z

(
∆Pj

σ

)
− 1

]
· Vj ,

where σ is the sample (unconditional) standard deviation of the transaction price change between
adjacent bars, Vj denotes the trading volume over time bar j, while V B

j and V S
j indicate the assigned buy

and sell volume, respectively. Converting the BV trade classification into trade indicators, as defined in
equation (1), we have,

b j = 2 ·Z
(

∆Pj

σ

)
− 1 .

The trade indicator, b j, still maps the time bars into the interval [−1,1] but, unlike for the tick
rule, it now attains interior values and not just −1 and 1. In fact, the BV approach interprets no price
change as balanced trading (b j = 0), while a large positive (negative) price change is translated into
a proportionally large (small) buy volume. For a given bucket, the signed order imbalance measures
SOI and the associated order imbalance measure OI are defined as in equations (2) and (3). The
BV-VPIN is then computed as in equation (4) but, of course, using BV rather than tick rule trade
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classification. At first glance, this seems sensible. Surely, large price changes mostly occur when order
flow is unbalanced. Moreover, the extreme allocation of all transactions in a time bar to the same side
of the market is avoided. Consequently, for a given time bar, the BV procedure may indeed produce a
more accurate trade classification than the (bulk) tick rule. In turn, this could render the VPIN measure
more reliable and informative.

Nonetheless, the BV classification represents an additional step away from the traditional approach.
No element of the BV procedure references features of the individual trades – rather the classification
asserts that price changes over time bars provide useful indicators for the underlying order imbalances.
We have already documented that the TR-VPIN approach, exploiting aggregate blocks of trading
volume, has a dramatic impact on the properties of the order imbalance measures relative to the standard
tick rule identification using individual trades. The BV methodology adds another critical determinant
to the mix by letting the size of price changes determine order imbalances. It is thus pertinent to reflect
on the properties of the BV-VPIN measure. We now turn to that task.

6.1 Sources of Variation in BV-VPIN

The new element introduced by BV-VPIN stems from the trade classification. We explore how this
procedure operates across different market conditions. We first formalize the notion that BV produces
less extreme order imbalance measures for any given time bar than TR. For a given bar size δ , let
bTR

j and bBV
j refer to the trade indicators for bar j obtained via TR and BV classification. It is readily

confirmed that,
|bBV

j | ≤ |bTR
j |.

This fact might suggest that the BV-OI will be smaller than TR-OI for volume buckets, and therefore
also that BV-VPIN will be lower than TR-VPIN. However, it is easy to construct counterexamples to
this prediction. It does not hold realization-by-realization, as the individual time bar TR-SOI measures
may cancel each other out at the bucket level.

To establish a general result, we resort to the type of assumptions invoked in Section 4.2.2. If the
BV trade indicator process is mean zero, independent of the volume weights, and i.i.d., then we have,
conditional on the volume pattern across the time bars, the extension of equation (9),√

E [SOI2] =

√
E
[
(w1 b1 + · · · +wQ bQ )2

]
=

√
E
[

w2
1 b2

1 + · · · +w2
Q b2

Q

]
= |w| ·σ(b) , (13)

where σ(b) is the standard deviation of a trade indicator. For BV classification, σ(b) < 1, implying
that

E
[

BV -SOI2 ] < E
[

T R-SOI2 ] .
Equation (13) suggests that the main sources of variation in the BV-OI and BV-VPIN measures are

linked to directly observable market variables, namely volatility and trading intensity. Clearly, σ(b)
is driven by the time variation in absolute price changes, or volatility. We comment on this specific
mechanism further below. The second factor is the L2 norm of the volume weight vector. It is tied to
the number of time bars in the volume bucket. For example, if the volume is homogeneous across the
bars, we have wq = 1/Q and |w| = Q ·w2

q = 1/Q. That is, |w| is inversely related to Q. Effectively,
γ = 1/Q is a measure of trade intensity, as it is governed (inversely) by the average trading volume
within the time bars of the bucket, V/Q.

We now briefly consider the relation between σ(b) and price change volatility. The BV approach
normalizes the price change over each time bar by (an estimate of) its unconditional standard deviation.
As is well known, and readily confirmed in the present sample, one-minute price changes are extremely
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far from being normally distributed. That is, the standard normal CDF is merely a devise for converting
price changes via a monotone transformation into units that fall in the prescribed interval. In fact, ELO
(2012a) make no direct assumption of Gaussianity, and other CDF functionals could be used for this
purpose. To shed light on the implications of their use of the normal CDF, we adopt an assumption
which provides a much improved approximation to the actual distribution of price changes across time.

Consider the case, where the price changes over each one-minute interval is indeed Gaussian, but
volatility varies across time bars, so the non-Gaussian nature of the unconditional price change is
generated by a normal-mixture distribution. At any point in time, the price change is Gaussian but
volatility is high in some part of the sample and low in others. Likewise, the volatility is systematically
much lower overnight than during regular trading hours. Using this simple, yet descriptive, data
generating process for asset price changes, we seek to understand how the relevant features of the
BV-trade classification and the associated BV-OI measure are impacted by volatility fluctuations.

Formally, we denote as by σ j the volatility over time bar j. Our mean-zero Gaussian mixture
assumption implies that

b j = 2 ·Z
(

∆Pj

σ j
·

σ j

σ

)
− 1 . (14)

Importantly, the standard normal CDF is applied to a standard normal variate scaled by σ j/σ.
Thus, the normalized price change is a mean-zero Gaussian, but with variance σ2

j /σ
2. Given these

assumptions, we may exemplify the effect of time-varying price change volatility. If σ j = 2σ, then the
probability of |b j| exceeding 0.50 is 73.6% rather than the 50% for σ j =σ, and the probability of |b j|
exceeding 0.90 is 41.1% rather than the 10% for σ j =σ. Likewise, for the more extreme – but still
empirically relevant – scenario of σ j = 5σ, the probability thresholds of 0.50 and 0.90 are exceeded
89.3% and 74.2% of the time compared to the 50% and 10% benchmarks associated with σ. The point
is that the average size of the b j realizations starts approaching the sequence of alternating -1 and 1
associated with the indicators of the TR procedure as price volatility increases.

In summary, our analysis suggests that the trade intensity and the price volatility are systematic
drivers of the BV order imbalance measure. Moreover, since the effect in equation (13) is given by
the product of these two activity indicators, the strong correlation between volume and volatility will
further magnify the impact during volatile market conditions. As such, we would expect BV-VPIN
to be even more sensitive to concurrent market activity than TR-VPIN which primarily is governed
only by the trading intensity. Of course, the key question remains whether the BV-VPIN metric
provides significant incremental information regarding future market conditions relative to such directly
observable activity variables.

6.2 Rationalizing the empirical behavior of BV-VPIN

We now revisit our prior findings regarding the behavior of TR-VPIN and seek to infer whether we
expect BV-VPIN to display similar traits or deviate in specific ways due to the modification of the trade
classification scheme. Moreover, we seek to verify whether the qualitative results are borne out over
our sample. As we postpone considerations of the events surrounding the flash crash to the subsequent
section, we start from Finding 2.

The positive correlation between the level of TR-VPIN and trading volume as well as the length
of the time bar, noted in Findings 2 and 3, carries over to BV-VPIN. The relation is driven by the
average number of separate time bars within the volume bucket and this dependence is preserved in
the BV-VPIN metric, as evidenced by equation (13). The second right most column of Table 5 verifies
that BV-VPIN is strongly correlated with trading volume. Moreover, the lower right panel of Figure 1
portrays the BV-VPIN series for δ = 60 seconds. It averages about 0.3 across the sample. Computing
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Table 5: Correlations of BV-VPIN with various activity variables

FB-VPIN

BV-VPIN U1-VPIN U2-VPIN ν=1 ν=1K ν=5K Volume VIX

δ = 10 0.85 0.68 -0.13 -0.01 0.16 0.73 0.46
δ = 60 0.89 0.86 -0.26 -0.11 0.10 0.80 0.56

δ = 300 0.84 0.86 -0.40 -0.23 -0.00 0.81 0.64

Notes: The table reports correlations of BV-VPIN for δ = 10, 60, and 300 sec, with U-VPIN, FB-VPIN, one-day
trading volume and the VIX. The sample period is January 2008 - July 2010.

the average values of BV-VPIN for δ = 10 and 300 seconds produces average values of about 0.2 and
0.45, respectively, confirming Finding 3. The related Finding 4 also trivially will apply to BV-VPIN,
but it is mostly relevant for understanding our benchmark U-VPIN metrics.

Moving to Finding 5, Table 5 confirms that BV-VPIN is also highly correlated with our U1-
and U2-VPIN benchmark measures. This is consistent with the trading intensity being an important
determinant of BV-VPIN. Moreover, the interaction with volatility may actually help mitigate the noise
in the BV-VPIN measure and render the correlation stronger than for TR-VPIN. This is where we may
see the first noticeable impact of the shift in trade classification as the built-in volatility correlation starts
having an impact. Of course, as noted in Finding 6, BV-VPIN also has dramatically different properties
than FB-VPIN and transaction VPIN. The latter are not, in contrast to BV-VPIN, directly related to price
volatility and they are constructed to annihilate any direct volume dependence so – not surprisingly –
the middle panel of Table 5 shows that the BV- and FB-VPIN measures are largely unrelated. Thus,
while ELO (2011c) assert that FB-VPIN is a viable alternative to TR-VPIN, it continues to produce
diametrically opposite results to the approaches employed in ELO (2011a, 2011c, 2012a). These
observations also relate to Finding 7. BV-VPIN is expected to be more strongly correlated with VIX
than TR-VPIN, as the price volatility is one of the direct forces behind the former, as demonstrated by
equations (13) and (14). Indeed, as may be verified by comparing Tables 5 and 2, over our sample,
BV-VPIN is more strongly associated with VIX than is the case for TR-VPIN.14 It is also evident from
Figure 1 that BV-VPIN accentuates the volatile sample periods more strongly than TR-VPIN – notice
in particular the more pronounced elevation of the BV-VPIN measure throughout the financial crisis.

The above remarks have relevance for Findings 8 and 9. Most importantly, because the trade
classification scheme actively imbues BV-VPIN with some short-term realized volatility information,
it should contain predictive power for future realized volatility beyond what is captured by our U-VPIN
metrics, which are solely governed by the trading pattern. On the other hand, the monotonic, yet highly
nonlinear, transformation of volatility in equation (14) is clearly not an efficient realized volatility
indicator. Thus, it is still likely to underachieve relative to a more direct volatility indicator like the
VIX index in terms of forecasting future volatility.

Table 6 reports on a set of predictive regressions for future average absolute returns over one and
fifty volume buckets. While TR-VPIN is poor, even relative to the U1-VPIN metric, the BV-VPIN
metric improves on the uninformed benchmark and even beats volume in terms of predictive power
for future volatility. Nonetheless, is falls far short of the VIX measure which roughly doubles the R2

obtained by BV-VPIN. Moreover, the results are remarkably consistent over both forecast horizons.

14One word of caution, however, as BV-VPIN clearly responds to current price volatility while the VIX represents longer
term (one month) volatility expectations. In this sense, a more suitable benchmark is a realized volatility estimator.
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Table 6: Forecast regressions for absolute return

One-period forecast 50-period forecast

Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 1 Reg 2 Reg 3 Reg 4 Reg 5

Const. -0.01 -0.16 -0.05 0.02 -0.02 0.00 -0.15 -0.04 0.02 -0.02
( -0.38) ( -6.12) ( -4.00) ( 1.92) ( -4.21) ( 0.15) ( -6.14) ( -3.51) ( 2.16) ( -4.08)

TR-VPIN 0.49 0.46
( 6.97) ( 7.15)

U1-VPIN 1.22 1.18
( 12.18) ( 12.62)

BV-VPIN 0.88 0.85
( 15.77) ( 15.94)

Vol×10−7 0.63 0.62
( 12.12) ( 12.67)

VIX×10−2 0.60 0.59
( 33.66) ( 37.14)

R̄2 2.41 7.58 11.09 8.93 21.25 7.97 27.23 39.26 33.64 78.35

Notes: The figures represent OLS regression coefficients; t-statistics based on HAC-standard errors, constructed
with 50 lags, are reported in parentheses. TR-VPIN, U1-VPIN, and BV-VPIN are for δ = 60 seconds; “Vol”
is the one-day backward trading volume. The forecast horizon is one volume bucket (“one period”) and fifty
volume buckets (“50 periods”), respectively. The sample period is January 2008 - July 2010.

These findings are fully consistent with the empirical results in ELO (2012a). They present extensive
evidence for a highly significant correlation between BV-VPIN and future volatility, as do we. However,
the interpretation differs greatly. ELO (2012a) argue this verifies that order flow toxicity predicts future
return volatility in a unique fashion, not directly related to other forecast variables. We find instead
that the correlation – beyond what is explained purely by the trading pattern and already conveyed by
our U-VPIN metrics – arises from the modification of the trade classification strategy from TR-OI to
BV-OI. This shift lets the size of the concurrent price change – a realized volatility measure – directly
impact the buy–sell indicator. Effectively, it is a distorted volatility measure which combines trading
intensity and price volatility in a nonlinear fashion, while the relationship between the BV-VPIN metric
and the true underlying order imbalance remains unclear.15 Thus, our interpretation of this aspect of
the evidence is that BV-VPIN constitutes an imperfect realized volatility metric which, by construction,
will have forecast power, due to the persistence in the volatility process. However, this predictability
stems exclusively from the incorporation of volume and price volatility into the measure. If the purpose
is to forecast future return volatility, we have well-known and much superior measures available.16 The
proof that BV-VPIN captures salient features of order flow toxicity, not embodied in regular real-time
volatility and volume measures, and provides a superior indicator of future market conditions must be

15The evidence in ELO (2012b) that BV classification is more accurate than traditional trade classification from individual
transactions using the tick rule is erroneous. Andersen and Bondarenko (2013) document that the relative accuracy is reversed,
i.e., the traditional tick rule is more precise than the BV classification. This finding is also consistent with Chakrabarty,
Pascual and Shkilko (2012), who evaluate the two classification rules on individual stock trades.

16As documented in Section 6.1, BV-VPIN is, by construction, responsive to volume and, in particular, realized volatility
innovations. In line with our prior evidence for TR-VPIN, we document, in AB (2013), using a longer sample, that all
predictive content of BV-VPIN for future return volatility is subsumed by a contemporaneous realized volatility measure.
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based on evidence that goes beyond generic volatility forecasting power.
When conducting forecasting exercises, ELO (2012a) first transform the VPIN values using the

empirical cumulative distribution function (CDF). While the CDF transformation facilitates comparison
of VPIN levels across alternative implementations, when we fix a specific implementation and look at
the time-series properties of VPIN, the rationale for this transformation is less clear. First, since the
CDF transform is monotone, it does not change rankings. Hence, all our observations in this regard
remain valid, even if judged by the CDF of VPIN rather than VPIN itself, including the point that
TR-VPIN (VB-VPIN) exceeds the May 6, 2010, value at 13:30 during 26 (49) of the preceding days in
the sample, constituting 4.3% (8.1%) of the days prior to the crash. Second, since the CDF transform
dampens the extreme readings of VPIN, it tends to lose predictive power. In appendix C, we report
the OLS regressions from Table 6, but using the CDF of VPIN in lieu of VPIN itself. We find that the
corresponding R2 statistics decrease marginally, but uniformly.17

7. Revisiting the flash crash

A potential concern about the preceding analysis is that it does not allow for the possibility that
VPIN is relatively uninformative during benign times, but may become highly informative when order
flow turns decidedly toxic. Indeed, one raison d’etre for VPIN is the ability to signal impending
turbulence. This is a harder hypothesis to test from a short sample, so we rely on a descriptive account
of the behavior of TR-VPIN and BV-VPIN across the dramatic events surrounding the flash crash. As
above, we first present evidence relating to the TR-VPIN metric, exploited in ELO (2011a, 2011c), and
subsequently check whether the conclusions are altered if we instead construct the BV-VPIN measure.

7.1 Replication and verifiability

The illustration in Section 4.1 shows that the TR-VPIN order imbalance measure can be sensitive
to minor changes in the trading process. This raises the possibility that TR-VPIN itself may not be
robust to small perturbations in the transaction record. Moreover, it is clearly dependent on the initial
conditions as the point at which we start cumulating the trading volume determines the location of the
buckets. It is not evident, however, if this is a major concern or whether the long moving average, used
in computing VPIN, suffices to minimize the impact and stabilize the measure.

To assess the magnitude of such effects during critical scenarios, we compile 400 different versions
of one-minute TR-VPIN for March 6, 2010, with each trajectory corresponding to a different location
of the volume buckets. Using a bucket of V = 40,000, the first trajectory is initiated with the first
transaction of the day, the second is initiated after the first 100 contracts have been traded, the third
after 200 contracts are traded, and so on until the 400th trajectory is initiated after 39,900 contracts
have been traded. This provides a simple way of approximating the distribution of TR-VPIN on the
day of the flash crash, reflecting the dependence on the initiation of the volume bucketing. In reality,
the starting point of the sample, years earlier, determines the exact location of the volume buckets on
this day. Hence, any shift in the initial condition alters the placement of the buckets on May 6, 2010,
in much the same manner as in the experiment described above.

Figure 5 summarizes the effects of shifting the buckets on May 6, 2010. The upper left panel shows
that TR-VPIN can fluctuate within a band approaching 20% of its median level across the trajectories,
while the average width of the band is near 10%. The upper right panel displays only five of the

17We have likewise repeated all our other exercises using the VPIN CDF, and the case for the toxicity metric weakens
slightly in all cases. These results are available upon request.
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Figure 5: Distribution of TR-VPIN values on May 6, 2010. The figure illustrates the distribution of TR-VPIN
values (δ = 60 seconds) for different starting points of the volume grid. The bottom panels show the histograms
of TR-VPIN values at 13:30 and 14:00. The top left panel shows the TR-VPIN trajectories generated by shifting
the starting point every 100 contracts. The top right panel shows only five trajectories, which are selected based
on the TR-VPIN values at 14:00 (min, 25%, 50%, 75%, and max).

trajectories to allow closer inspection. It is evident that the trajectories behave quite differently, even
if they are correlated. For example, the black trajectory is the highest at 11:00, and it enters the crash
period at the second highest level. However, this TR-VPIN trajectory actually drops during the crash
and its subsequent rise is less pronounced than that associated with, say, the lightest shaded trajectory.
In fact, the latter evolves similarly to the trajectory used in our earlier depictions of this trading day.
Finally, the bottom panels display the range of values attained by the different TR-VPIN trajectories at
the start of the crash (0.52-0.56) and at their maximum level (0.66-0.74). The left panel is relevant for
judging whether VPIN attained a historically high prior to the crash while the right panel reflects the
surge in trading intensity associated with the crash, which inevitably forces the metric to spike.

In light of these results, our overview of the TR-VPIN dynamics during the flash crash in Section 2
may be problematic as it is based on only one path among thousands of potential candidates. However,
our conclusions, including Finding 1, remain unaffected. Specifically, the pre-crash value of 0.53 is
typical of the scenarios depicted in the lower left panel of Figure 5. Moreover, while there is uncertainty
about the TR-VPIN values, as reflected in the width of bands in the top panels, the qualitative features
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are quite similar across the paths.18

Finding 11: The TR-VPIN metric at any specific point in time on a given trading day is sensitive
to the exact sequence of trades recorded prior to that trading day. It implies that any change in the
starting point of the sample or any removal of potentially invalid trades early in the sample will exert a
potentially significant impact on the metric throughout the entire sample.

The observations above bring the issue of replication to the forefront. Unless there is agreement
concerning the starting point as well as the recording and status of all transactions across two alternative
data sources, competing computations of TR-VPIN will produce divergent behavior across critical
periods in the sample. This presents practical problems for using the metric as an indicator of market
stress or as the basis for a futures contract. While an exchange may take on the task of monitoring the
relevant transaction series, it may become contentious that realized TR-VPIN depends on inclusion or
exclusion of specific trades.19

Another concern is the potential lack of robustness of empirical work involving TR-VPIN. At a
minimum, some standard for robustness should be adopted to ensure that conclusions do not hinge on
idiosyncratic features of the design, such as the original starting point of the sample, the exact source
of data, and the criterion for excluding “unusual” trades.

Finally, we reiterate Finding 1. Relative to our original TR-VPIN series, not a single one of our
400 trajectories for March 6, 2010, reach a historical high prior to the flash crash.

7.2 Signed TR-VPIN measures

The documented dispersion in TR-VPIN values may be surprising. One might expect random
fluctuations in OI to diversify across the 50 moving average terms used to compute the metric. However,
since the OI measures represent absolute values, there is no opportunity for positive and negative values
to cancel each other out so, instead, random outliers tend to cumulate.

Figure 6 illustrates this feature. The right panels display the SOI measures associated with two of
the TR-VPIN trajectories from Figure 5. Evidently, the black trajectory, by chance, has many more
moderate SOI observations, falling within the range of [-0.50, 0], than the gray one during the period
12:00-14:00. This translates into a significantly different evolution of TR-VPIN, as depicted in the top
left panel. The gray trajectory starts out well below the black one at 12:00 but ends up at a higher level
at 14:00. However, if we average the signed – not the absolute – SOI measures, we obtain alternative
smoothed signed order imbalance indicators. These are plotted in the lower left panel. Now, the black
and gray trajectories basically coincide, showing that diversification across 50 observations is highly
effective once we retain the sign of SOI. Hence, the signed TR-VPIN measure is far less sensitive to the
positioning of the buckets and avoid stark dependencies on initial conditions. Moreover, it send a clear
message: there was a growing dominance of active selling from noon until the end of the crash, and
then an immediate reversal towards restoration of the cumulative order imbalance, which is complete
before 15:00. At a more detailed level, we note that the truly dramatic collapse in price over the last 2-3
minutes of the crash period coincides with a huge jump in the (negative) order imbalance. Likewise, the

18We also investigated the robustness of our key findings by repeating the analysis for the average values of TR-VPIN,
U1-VPIN, and U2-VPIN over the full sample across the 400 sample paths described above. The averaging reduces the noise
in the series, so the TR-VPIN measures become even more highly correlated, and their correlations with volume and VIX go
up marginally. Thus, these more precise measurements only serve to reinforce all major results. In particular, the regression
evidence in Table 4 is strengthened further. The results for the averaged VPIN measures are provided in the Appendix. We
thank the referee for suggesting this approach.

19As noted by the referee, a VPIN futures contract would also need to grapple with the issue of being robust to manipulation,
as the innovations to VPIN will be sensitive to trades consummated at the end of each time bar or volume bin.
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Figure 6: Alternative TR-VPIN measures on May 6, 2010, using signed order imbalance. The right panels
depict TR-SOI (δ = 60 seconds) for two different starting points of the volume grid, corresponding to the
minimum (black) and maximum (gray) values of TR-VPIN at 14:00. The top left panel displays TR-VPIN,
while the bottom left panel portrays the corresponding VPIN measures based on the signed order imbalance.

significant (negative) increase in the order imbalance just after 13:00 is striking and could, in retrospect,
be seen as a forewarning of the ensuing turbulence.

We deem these preliminary observations intriguing. It is certainly feasible to construct cumulative
(signed) order imbalance measures in real time. Nonetheless, one concern is that they may be extremely
highly correlated with the realized price path and thus not provide much independent information. It is
beyond the scope of this article to present a thorough analysis of signed VPIN style metrics.

Finding 12: The use of absolute (OI), rather than signed, order imbalance (SOI) measures in
constructing TR-VPIN inflates the idiosyncratic variation of the metric. In contrast, the cumulative SOI
is measured accurately and is helpful in identifying the trading activity that is driving the concurrent
price changes. Nonetheless, it is unclear if the cumulative SOI can be used in predicting price changes
and volatility rather than simply rationalizing them ex post.

7.3 A closer look at the dynamics of trading activity

The trading volume on May 6, 2010, exceeded 250% of the average for the sample, but the trade
size distribution was close to that of a regular trading day, reported in Table 1. Figure 7 complements
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Figure 7: Evolution of various VPIN and market activity variables on May 6, 2010. The figure plots market
statistics at the one-minute frequency from 7:30 to 15:15. The dashed vertical line shows the start of the regular
trading hours, while the solid vertical lines indicate the timing of the “flash crash.” Left panels: (1) TR-VPIN
(black), U1-VPIN (dark gray), and U2-VPIN (light gray) for δ = 10 sec, (2) same for δ = 60 sec, (3) same for
δ = 300 sec. Right panels: (1) FB-VPIN for ν = 1 (black), ν = 1K (dark gray), and ν = 5K (light gray); (2) the
average trade size, (3) the fraction of V = 40,000 contracts traded per one-minute time bar.

Figure 2. It displays the evolution of alternative VPIN measures, the VIX, and the trading intensity,
as given by the fraction of 40,000 contracts (one volume bucket) traded per minute, i.e., per time bar,
throughout the day of the flash crash.

Focusing initially on the bottom right panel in Figure 7, we note that the trading intensity around the
flash crash rose to levels which imply that each volume bucket between 13:10-15:00 contains no more

31



than three time bars, and, even more strikingly, from 13:40-13:55, the buckets were filled in less than
one minute. Tautologically, this produces a string of TR-OI measures near unity, irrespective of the
underlying order imbalances. This is confirmed by the qualitatively similar increase in U1-VPIN and
U2-VPIN over this period for both δ = 60 and δ = 10. In other words, TR-VPIN must rise sharply, for
mechanical reasons, due to the elevated trading activity. While it is possible we would never observe
such a trading pattern in the absence of order flow toxicity, the dynamics of TR-VPIN simply cannot
shed light on the issue. For VPIN to signal the impending chaos, it must attain extreme values prior to
the crash. Turning towards this crucial timing dimension, we observe that the TR-VPIN and U-VPIN
series for δ = 10 and δ = 60 reach their maximum after 14:00, and thus some time after the flash crash
cycle has played itself out. As observed in Finding 1, the evidence for VPIN reaching an extreme level
prior to the crash is much less compelling, but we pursue this question further in the subsequent section.

Finding 13: The explosive increase in TR-VPIN during and following the flash crash is fully
explained by the underlying trading pattern, as evidenced by the qualitatively identical behavior of the
U-VPIN series. In particular, the trading intensity rose to such levels that the OI measures mechanically
were attaining the maximum value of unity, irrespective of the actual order flow imbalances.

A few additional observations on Figure 7 are warranted. First, transaction VPIN, or FB-VPIN with
ν = 1, again depicts an entirely different evolution than TR-VPIN. It is flat during the crash and then
drops off sharply as the prices rebound, even as TR-VPIN continues to soar. FB-VPIN for ν = 1,000
displays similar features, while the FB-VPIN for ν = 5,000 represents an intermediate case between
TR- and transaction VPIN. Second, the VIX index also remains elevated for a lengthy period and
appears to reach a maximum more than an hour after the crash. However, as documented by Andersen,
Bondarenko, and Gonzalez-Perez (2011), this is an artifact of dramatic swings in the liquidity of the
S&P 500 options market, which distorts the computation of the index. If one applies a coherent range
of option strikes within the VIX index formula across May 6, 2010, the index attains its maximum
value exactly at the nadir of the S&P 500 index. Third, the extremely steep increase in all the TR-
and U-VPIN series during the last couple of minutes during the actual crash period coincides with the
downward jump in the SOI measure on Figure 6, suggesting this is the point in time when the depth
(on the bid side) of the order book truly evaporates. The key question is whether any of our metrics
reliably can be used to predict such events in advance.

7.4 TR-VPIN as crash predictor

The issue of whether TR-VPIN provided a clear signal indicating sharply rising order toxicity prior
to the flash crash cannot be conclusively answered from our limited historical sample. However, we can
summarize the evidence as it would appear at the time just prior to the crash and seek to infer whether
the prevailing real-time value of TR-VPIN was exceptional compared to the recent history.

To this end, we construct three separate figures with scatter plots depicting pairwise observations
of alternative volatility predictors (on the horizontal axis) versus subsequent realized volatility (on the
vertical axis) over different forecast horizons. The associated regression lines convey the predictions
from a simple linear model exploiting available historical evidence. The plots cover the beginning of
our sample through the start of the flash crash, thus reflecting the real-time perspective an observer may
have acquired at that juncture by constructing the candidate volatility predictors on a high-frequency
basis. The gray dots indicate the predictor-volatility pairs constructed from data more than five days
before the flash crash, while the black dots refer to the forecast-realization pairs obtained within the last
five days prior to the crash. Note that we exploit non-overlapping forecast horizons to avoid excessive
cluttering of the displays.
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Figure 8: Average absolute 50-day returns versus TR-VPIN, volume and volatility measures. The figure
shows six scatter plots of average absolute return AAR(t, t +50) versus TR-VPIN with δ = 10 and 60 sec, versus
FB-VPIN with ν = 1 and 1K, volume, and VIX. Volume is one-day trading volume, in millions. AAR(t, t +T ) =
1
T ∑

T
i=1 |rt+i|, where rt = 100 ln(Pt/Pt−1 ) is the log return of the S&P 500 futures over one volume bucket. Black

dots indicate the five days preceding 13:30 on May 6, 2010. The sample period is January 1, 2008 - May 6, 2010.

Figure 8 depicts results for the 50-volume-bucket-ahead forecast horizon. For all predictors, it is
hard to detect any unusual pre-crash pattern: even if TR-VPIN clearly is elevated it is not exceptional,
and the realized volatilities are fairly subdued compared with the values attained during the financial
crisis. We also note the pronounced negative relation between transaction and FB-VPIN and the future
realized volatility as well as the more well-defined positive association between the volume and VIX
series and future realized absolute returns. In fact, the generally limited explanatory power of TR-VPIN
relative to a number of the other candidate predictor variables is evident by the diffuse shape of the
TR-VPIN scatter plots. Nonetheless, it is also clear that none of the other variables provide any clear
indication that volatility is about to erupt prior to the crash. For none of the displays, we detect a
noticeable disconnect between the grey and black dots.

One problem with the relatively long forecast horizon employed in Figure 8 is that it limits the
number of pre-crash observations quite severely, given our use of non-overlapping forecasts. We
therefore turn to shorter horizons for a more rich set of data points. The disadvantage is that the
scatter plots will tend to more dispersed as the realized absolute returns over shorter horizons provide
noisier measures of the underlying volatility, see, e.g., Andersen and Bollerslev (1998).

The plots in Figure 9, reflecting a forecast horizon of ten buckets, reveal qualitatively similar
patterns. Likewise, moving to the extreme end of the spectrum in Figure 10 – forecasting only the
absolute return over the next volume bucket – does not alter the impression that TR-VPIN fluctuates
within a mildly elevated, but fairly standard, range prior to the crash. The main difference is that all
“clouds” become more diffuse, reflecting the use of very imprecise volatility proxies. In summary,
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Figure 9: Average absolute 10-day returns versus TR-VPIN, volume and volatility measures. The figure
shows six scatter plots of average absolute return AAR(t, t +10) versus TR-VPIN with δ = 10 and 60 sec, versus
FB-VPIN with ν = 1 and 1K, Volume, and VIX. Volume is one-day trading volume, in millions. AAR(t, t+T ) =
1
T ∑

T
i=1 |rt+i|, where rt = 100 ln(Pt/Pt−1 ) is the log return of the S&P 500 futures over one volume bucket. Black

dots indicate the five days preceding 13:30 on May 6, 2010. The sample period is January 1, 2008 - May 6, 2010.

when focusing on the pre-crash sample, there is no indication that real-time TR-VPIN measures would
have forewarned an observer of the impending turmoil.20

Finding 14: The evolution of TR-VPIN series prior to the flash crash does not appear genuinely
remarkable along any dimension. In particular, the level of the series was elevated relative to the
average day, but it was not reaching values close to historical extremes.

7.5 BV-VPIN and the flash crash

In ELO (2012a), the implementation of VPIN is based on so-called bulk volume classification,
leading to the BV-VPIN metric. We now assess whether any of the critical issues surrounding the
behavior of the VPIN measure on the day of the flash crash is sensitive to this change in metric.

First, we reproduce the analysis of Section 7.1 using BV-VPIN in lieu of TR-VPIN. Figure 11
provides the analogue of Figure 5.

As expected, given the analysis in Section 6.1, the level of BV-VPIN is significantly lower than for
TR-VPIN, especially in the early parts of the day. In addition, the dispersion across the 400 trajectories
is slightly lower, which combines to generate a degree of dispersion relative to the median value
which is roughly of the magnitude we found for TR-VPIN. For this particular day, the issue regarding
replication of the actual trajectory seems to be qualitatively similar to our findings for TR-VPIN.

20We have confirmed that this conclusion is robust to the choice of sample period and, in particular, that it is not dependent
on the inclusion of the highly volatile period from August 2008 to May 2009.

34



Figure 10: Average absolute one-day returns versus TR-VPIN, volume and volatility measures. The figure
shows six scatter plots of average absolute return AAR(t, t +1) versus TR-VPIN with δ = 10 and 60 sec, versus
FB-VPIN with ν = 1 and 1K, Volume, and VIX. Volume is one-day trading volume, in millions. AAR(t, t+T ) =
1
T ∑

T
i=1 |rt+i|, where rt = 100 ln(Pt/Pt−1 ) is the log return of the S&P 500 futures over one volume bucket. Black

dots indicate the five days preceding 13:30 on May 6, 2010. The sample period is January 1, 2008 - May 6, 2010.

To obtain a more detailed perspective, we also reproduce Figure 6 using BV-VPIN rather than
TR-VPIN.

The left panels of Figure 12 are remarkably consistent with the corresponding panels in Figure 6.
One trajectory is steadily increasing throughout the trading day, while the other is quite stable up to
about 13:00. At that point, both display a fairly steep ascent, but the path that started out at a lower
level in the morning ends up significantly above the other path by 14:00. Thus, the discrepancy between
the trajectories can be quite striking. Nonetheless, the associated signed order imbalance measure in
the lower left panel again shows remarkable consistency across the two realizations, confirming the
findings from Section 6.2.

The right panels of Figure 12 are also quite informative. Prior to 13:00, the SOI trajectories are
muted relative to the corresponding paths on Figure 6. However, from 13:00 and, in particular, during
and following the crash, the BV-SOI measures amplify greatly to resemble those from Figure 6 in all
respects. That is, once the trading intensity and price volatility rise sharply, the innovations in the TR-
and BV-OI measures become near indistinguishable. As discussed in Section 6.1, this implies that the
relative increase in BV-VPIN is more dramatic than for TR-VPIN during volatile episodes. As such,
the crash event provides a nice illustration of the effect induced by a simultaneous escalation of trading
intensity and price volatility, highlighted theoretically in equation (13).

Of course, the ultimate question is whether the level of the BV-VPIN metric was foreshadowing
the crash event. On this point, the evidence seems clear and non-confirmatory. The level of BV-VPIN
at 13:00, when the trajectories in Figure 12 largely coincide, was nowhere close to historical highs, as
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Figure 11: Distribution of BV-VPIN values on May 6, 2010. The figure depicts the distribution of BV-VPIN
values (δ = 60 sec) for different starting points of the volume grid. The bottom panels show the histograms of
BV-VPIN values at 13:30 and 14:00. The top left panel shows the BV-VPIN trajectories generated by shifting
the starting point every 100 contracts. The top right panel shows only five trajectories, which are selected based
on the BV-VPIN values at 14:00 (min, 25%, 50%, 75%, and max).

can be seen from Figure 1. Even after the relatively steep increase from 13:00 to 13:30, the maximum
value attained across the 400 trajectories in Figure 11 falls well within the range of values observed
previously in our sample. In fact, from this perspective, the level of the BV-VPIN metric at either 13:00
or 13:30 seems to provide less of a signal about impending turmoil than the TR-VPIN metric.

In summary, we do not find any indication that BV-VPIN outperforms TR-VPIN in predicting
potential flash crashes. The metric is, by construction, more highly correlated with price volatility
than TR-VPIN, but this does not translate into much predictive power for future volatility relative to
standard volatility forecast measures, as documented in Table 6. Moreover, the level of the BV-VPIN
metric failed to provide a clear signal of potential trouble ahead of the flash crash.

8. Conclusion

Inspired by the striking empirical evidence of ELO (2011a), we examine the TR-VPIN measure
and its ability to forecast short-term price volatility and signal impending market turmoil. Our results
are largely non-confirmatory. First, TR-VPIN, almost by construction, is highly correlated with trading
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Figure 12: Alternative BV-VPIN measures on May 6, 2010, using signed order imbalance. The right panels
depict BV-SOI (δ = 60 sec) for two different starting points of the volume grid, corresponding to the minimum
(black) and maximum (gray) values of BV-VPIN at 14:00. The top left panel displays BV-VPIN, while the
bottom left panel portrays the corresponding VPIN measures based on the signed order imbalance.

volume and thus will tend to covary also with the current and future volatility level. However, once
we control for the component of VPIN that is driven by the volume dynamics, we find no incremental
information in TR-VPIN concerning future short-term volatility. Similarly, constructing TR-VPIN style
measures from fixed volume bins or transaction data, avoiding the mechanical correlation with trading
volume, we find VPIN to be negatively correlated with future volatility – a feature we tentatively
ascribe to a negative correlation between the volatility level and the trade classification rule. This
may potentially arise from a drop in the depth of the limit order book and smaller transaction sizes
as volatility and economic uncertainty increases. Second, we found the TR-VPIN metric prior to the
crash on May 6, 2010, to be elevated but less than extraordinary. Moreover, the VPIN dynamics
throughout this day is readily accounted for by the trading pattern. As such, the identification of order
flow imbalances via the trade classification scheme has no visible impact on TR-VPIN over this period.

Next, we extend the analysis to cover the recent modification of VPIN through the so-called bulk
volume trade classification scheme. The resulting BV-VPIN metric is constructed by smoothing the
absolute value of monotone transformations of one-minute price changes, and thus inherits features
usually associated with a realized volatility measure, along with the dependence on the trading intensity
embedded in the TR-VPIN metric. We confirm that BV-VPIN is strongly correlated with both volatility
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and trading intensity. Unfortunately, its predictive power regarding impending market volatility falls
well short of what can be obtained by existing real-time volatility indicators. Moreover, there is no
evidence that it improves upon the TR-VPIN metric in terms of signaling the onset of the flash crash.

Our findings suggest that the TR- and BV-VPIN metrics do not offer the most fruitful ways of
monitoring order flow imbalances and market tensions, so additional experimentation with alternative
trade classification schemes may be warranted. For example, the signed version of VPIN is less
sensitive to initial conditions and may be more suitable for direct monitoring of cumulative (signed)
order imbalances. Nonetheless, any procedure adopting a VPIN metric solely by modifying the trade
classification rule, including the signed VPIN measure, would still be subject to a number of the
potential distortions analyzed in this paper, so in-depth analysis is warranted prior to adoption.

A different and useful approach to assess the potential of the basic VPIN approach would be to
establish how the procedure works under perfect classification of active buys and sells. This would
enable direct analysis of the precision of any given classification rule, and it would serve as the natural
benchmark for results obtained via TR-, BV-, and FB-based measures of order imbalance. In principle,
this is feasible for a centralized electronic order book market such as the E-mini S&P 500 futures, as
trades are typically consummated when an existing bid or ask price is hit. However, this identification
requires access to an even more detailed data set, including limit order book information and reliable
sequencing of trades versus quote revision events.

In conclusion, while a real-time statistic for gauging the prevailing order imbalance and predicting
episodic market stress scenarios is in high demand, we conclude that current incarnations of the VPIN
metric are not ideal. The search for such a metric is high on the research agenda. We hope the type of
analysis undertaken in this article will be helpful in identifying the robust and promising market stress
indicators among the large set of candidate measures that may be proposed.
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Appendix

A Proof of equations (5) and (6)

Consider Q independent binary random variables b1,b2, . . . ,bQ, where bi = ±1. Let SQ = ∑
Q
i=1 bi denote

their sum. The function F(Q) can be computed using the expectation of the absolute value |SQ| as:

F(Q) =
E [|SQ|]

Q
=

1
2QQ

Q

∑
i=0

Ci
Q · |Q−2 · i|,

where
Ck

n =
n!

k!(n− k)!

is the binomial coefficient, sometimes also denoted as C(k,n), or
(n

k

)
. We are going to use the method of

mathematical induction to prove that:

G(Q) :=
Q

∑
i=0

Ci
Q · |Q−2 · i|=

{
(2q)Cq

2q, if Q = 2q
2(2q+1)Cq

2q, if Q = 2q+1 (15)

It is easy to verify that the relationship in (15) is true for Q = 1, 2, 3, for which G(Q) = 1, 4, 12. Next we
prove in two separate cases that (1) if the relationship is true for some Q = 2q, then it is also true for Q = 2q+1,
and (2) if the relationship is true for Q = 2q+1, then it is also true for Q = 2q+2. In both cases, we rely on two
basic properties of the binomial coefficients:

(i) C0
n =Cn

n = 1,

(ii) Ck+1
n+1 =Ck

n +Ck+1
n , for all 0≤ k ≤ n−1.

Case 1: Suppose that G(2q) = (2q)Cq
2q. We can re-write:

G(2q+1) :=
2q+1

∑
i=0

Ci
2q+1 · |2q+1−2 · i|

=C0
2q+1 · (2q+1)+C1

2q+1 · (2q−1)+ . . .+Cq
2q+1 ·1+Cq+1

2q+1 ·1+ . . .+C2q+1
2q+1 · (2q+1).

The above expression is the sum of (2q+2) products, for which the first factor takes values C0
2q+1,C

1
2q+1, . . .C

2q+1
2q+1

and the second factor takes values (2q+1),(2q−1), . . . ,3,1,1,3, . . . ,(2q−1),(2q+1). Using properties (i) and
(ii), we substitute C0

2q+1 =C0
2q, Ci

2q+1 =Ci−1
2q +Ci

2q for 1≤ i≤ 2q, and C2q+1
2q+1 =C2q+1

2q . Re-arranging terms, we
obtain:

G(2q+1) =C0
2q · (4q)+C1

2q · (4q−4)+ . . .+Cq−1
2q ·4+Cq

2q ·2+Cq+1
2q ·4+ . . .+C2q

2q · (4q)

= 2G(2q)+Cq
2q ·2 =Cq

2q · (4q+2) = 2(2q+1)Cq
2q.

Case 2: Suppose that G(2q+1) = 2(2q+1)Cq
2q. Proceeding similarly to the previous case,

G(2q+2) :=
2q+2

∑
i=0

Ci
2q+2 · |2q+2−2 · i|

=C0
2q+2 · (2q+2)+C1

2q+2 · (2q)+ . . .+Cq
2q+2 ·2+Cq+2

2q+2 ·2+ . . .+C2q+2
2q+2 · (2q+2)

=C0
2q+1 · (4q+2)+C1

2q+1 · (4q−2)+ . . .+Cq
2q+1 ·4+Cq+1

2q+1 ·4+ . . .+C2q+1
2q+1 · (4q+2)

= 2G(2q+1) = 4(2q+1)Cq
2q =

(2q)!
q!q!

· (2q+1)
(2q+2)(2q+2)
(q+1)(q+1)
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= (2q+2)
(2q+2)!

(q+1)!(q+1)!
= (2q+2)Cq+1

2q+2.

The proof of (5) now obtains from (15) because:

F(Q) =
G(Q)

2QQ
=

1
22q Cq

2q if Q = 2q, or Q = 2q+1.

The proof of (6) follows from (5) and Stirling’s approximation for large factorials:

Q!∼
√

2πQ
(

Q
e

)Q

.

�

B Average VPIN measures
We explore how much of the time series variation in the VPIN measures is due to the noise associated with

the initial conditions. For each aggregation level, δ = 10, δ = 60, and δ = 300, we compute 400 alternative
versions of VPIN, U1-VPIN, and U2-VPIN, corresponding to different starting points, each 100 contracts apart.
Then we compute the average across the 400 trajectories. Tables 7-8 repeat the results of Tables 2 and 4, but
using the averaged versions of VPIN.

Table 7: Correlations between various average VPIN and market activity variables

δ = 10

TR-VPIN U1-VPIN U2-VPIN Volume VIX

TR-VPIN 1.00 0.57 0.08
U1-VPIN 0.75 1.00 0.84 0.47
U2-VPIN 0.81 0.86 1.00 0.61 0.14

δ = 60

TR-VPIN U1-VPIN U2-VPIN Volume VIX

TR-VPIN 1.00 0.67 0.24
U1-VPIN 0.83 1.00 0.85 0.48
U2-VPIN 0.86 0.99 1.00 0.82 0.40

δ = 300

TR-VPIN U1-VPIN U2-VPIN Volume VIX

TR-VPIN 1.00 0.75 0.39
U1-VPIN 0.88 1.00 0.84 0.46
U2-VPIN 0.89 0.97 1.00 0.83 0.48

Notes: VPIN measures are computed as averages of 400 alternative versions, corresponding to different starting
point. The table reports correlations of average TR-VPIN, U1-VPIN, and U2-VPIN for δ = 10, 60, and 300 sec,
one-day trading volume, and VIX. The sample period is January 2008 - July 2010.
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Table 8: Forecast regressions for absolute return, average VPIN

Panel A: One-period forecast

Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 Reg 9 Reg 10

Const. -0.04 -0.16 0.02 -0.02 -0.10 0.08 -0.09 -0.10 -0.05 -0.07
( -1.33) ( -6.18) ( 1.92) ( -4.21) ( -3.87) ( 3.52) ( -6.22) ( -6.67) ( -6.91) ( -4.24)

TR-VPIN 0.57 -0.70 -0.21 0.21 0.01 0.01
( 7.34) ( -8.30) ( -3.11) ( 5.57) ( 0.12) ( 0.28)

U1-VPIN 1.23 1.99 0.36 0.09
( 12.22) ( 16.14) ( 4.92) ( 1.01)

Vol×10−7 0.63 0.72 0.20 0.16
( 12.12) ( 12.60) ( 6.83) ( 3.69)

VIX×10−2 0.60 0.58 0.55 0.54 0.53
( 33.66) ( 35.94) ( 32.08) ( 34.31) ( 32.48)

R̄2 2.76 7.72 8.93 21.25 9.05 9.15 21.62 21.77 21.90 21.92

Panel B: 50-period forecast

Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 Reg 9 Reg 10

Const. -0.02 -0.15 0.02 -0.02 -0.09 0.10 -0.07 -0.08 -0.04 -0.04
( -0.75) ( -6.19) ( 2.16) ( -4.08) ( -3.63) ( 5.08) ( -5.96) ( -6.61) ( -7.23) ( -3.41)

TR-VPIN 0.52 -0.78 -0.29 0.16 -0.08 -0.07
( 7.44) ( -9.76) ( -4.65) ( 5.19) ( -2.03) ( -1.85)

U1-VPIN 1.19 2.03 0.41 0.12
( 12.63) ( 16.71) ( 6.26) ( 1.51)

Vol×10−7 0.62 0.74 0.19 0.18
( 12.67) ( 13.23) ( 7.49) ( 4.99)

VIX×10−2 0.59 0.58 0.54 0.53 0.53
( 37.14) ( 38.93) ( 36.35) ( 37.64) ( 36.54)

R̄2 8.85 27.75 33.64 78.35 33.99 35.16 79.11 79.86 80.50 80.56

Notes: The figures represent OLS regression coefficients; t-statistics based on HAC-standard errors, constructed
with 50 lags, are reported in parentheses. TR-VPIN and U2-VPIN are for δ = 60 seconds and are computed as
averages of 400 alternative versions, corresponding to different starting points; “Vol” is the one-day backward
trading volume. The sample period is January 2008 - July 2010.

C Forecast regressions for absolute return using VPIN CDF
This appendix explores the predictive power of the CDF transformation of VPIN measures for future short

run return volatility. Table 9 reports on the same type of OLS regressions as in Table 6, except that the raw
VPIN metrics are replaced with the corresponding VPIN CDF measures. The regressions for volume and VIX
are repeated to facilitate comparison.
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Table 9: Forecast regressions for absolute return using VPIN CDF

One-period forecast 50-period forecast

Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 1 Reg 2 Reg 3 Reg 4 Reg 5

Const. 0.13 0.09 0.07 0.02 -0.02 0.13 0.09 0.08 0.02 -0.02
( 23.45) ( 18.83) ( 17.84) ( 1.92) ( -4.21) ( 24.91) ( 20.53) ( 19.39) ( 2.16) ( -4.08)

TR-VPIN CDF 0.09 0.09
( 7.25) ( 7.34)

U1-VPIN CDF 0.17 0.17
( 13.97) ( 14.54)

BV-VPIN CDF 0.20 0.20
( 17.23) ( 17.86)

Vol×10−7 0.63 0.62
( 12.12) ( 12.67)

VIX×10−2 0.60 0.59
( 33.66) ( 37.14)

R̄2 1.97 7.16 9.70 8.93 21.25 6.83 26.61 35.80 33.64 78.35

Notes: The figures represent OLS regression coefficients; t-statistics based on HAC-standard errors, constructed
with 50 lags, are reported in parentheses. Unlike Table 6, this table focuses on the CDF transformation of VPIN
measures, instead of raw VPIN measures. TR-VPIN, U1-VPIN, and BV-VPIN are for δ = 60 seconds; “Vol”
is the one-day backward trading volume. The regressions for volume and VIX are the same as in Table 6 and
are repeated to facilitate direct comparison. The forecast horizon is one volume bucket (“one period”) and fifty
volume buckets (“50 periods”), respectively. The sample period is January 2008 - July 2010.
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